Journal of Obesity & Metabolic Syndrome

Search

Article

Korean J Obes 2011; 20(4): 161-169

Published online December 1, 2011

Copyright © Korean Society for the Study of Obesity.

The Actions of PPARγ Agonists on the Various Target Organs

Jun Goo Kang, Cheol-Young Park(1)*

Department of Internal Medicine, College of Medicine, Hallym University, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine(1)

Thiazolidinedione (TZD)s are peroxisome proliferator-activated receptor gamma (PPARγ) agonists regulating the expression of several genes involved in the regulation of glucose and lipid metabolism. Many clinical studies demonstrated that TZD not only improves hyperglycemia, but also has additional benefits on blood pressure, dyslipidemia, and inflammatory markers. As a result, it
was expected that TZD would reduce the risk of cardiovascular disease. However, it was found that the positive data observed for surrogate markers did not necessarily correspond to positive cardiovascular outcomes.
However, recently non-TZD, such as selective peroxisome proliferator-activated receptor gamma modulator are actively under investigation for treating hepatic steatosis and type 2 diabetes replacing PPARγ agonist. For this reason PPARγ is involved in the pathogenesis of numerous diseases including obesity, diabetes, and atherosclerosis, because of its role in decreasing insulin
resistance and inflammation. We previously reported that TZD treatment may be associated with the depot-specific effects of lipid storage and energy expenditure genes on fat redistribution in individual adipose tissues and Sirt6 is also involved in TZD-mediated metabolic regulation.
Taken together, these findings support the improvement of hepatic steatosis by TZD by activation of the Sirt6-AMPK pathway. In this review, we would like to discuss the actions of PPARγ agonists on the various target organs and diseases through basic and clinical studies, on the basis of our study.

Keywords: PPARγ, Thiazolidinedione, Adipose tissue, Hepatic steatosis, Sirt6

Fig. 1. Proposed model for the effects of TZD treatment on the depot-specific regulation of lipid storage and energy expenditure genes in non-mesenteric (A) and mesenteric (B) fat. Gyk, Glycerol Kinase; PEPCK, Phosphoenolpyruvate carboxykinase; AQPap7, Aquaporin adipose; LPL, lipoprotein lipase; HSL, hormone-sensitive lipase; FATP, Fatty acid transport protein; ACC, Acetyl-CoA carboxylase-α; FAS, Fatty acid synthase; CPT-1, Carnitin palmityl transferase-1.
Fig. 2. Metabolic alterations in insulin-resistant states (A) and in hepatic AMPK activation (B). ACC, Acetyl-CoA carboxylase; AMPK, AMP-activated protein kinase; ACL, ATP citrate lyase; ChREBP, carbohydrate response element binding protein; CPT-1, carnitine palmitoyl transferase-1; FAS, fatty acid synthase; SCD, stearoyl-CoA desaturase.
  1. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002;53:409-35.
    Pubmed CrossRef
  2. Lehrke M, Lazar MA. The many faces of PPAR gamma. Cell 2005;123:993-9.
    Pubmed CrossRef
  3. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007;356:2457-71.
    Pubmed CrossRef
  4. Cohen A, Rabbani A, Shah N, Alexander GC. Changes in glitazone use among office-based physicians in the U.S., 2003-2009. Diabetes Care 2010;33:823-5.
    Pubmed KoreaMed CrossRef
  5. Lebovitz HE, Dole JF, Patwardhan R, Rappaport EB, Freed MI. The Rosiglitazone Clinical Trials Study Group: Rosiglitazone monotherapy is effective in patients with type 2 diabetes. J Clin Endocrinol Metab 2001;86:280-8.
    Pubmed CrossRef
  6. de Souza CJ, Eckhardt M, Gagen K, Dong M, Chen W, Laurent D, et al. Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes 2001;50:1863-71.
    Pubmed CrossRef
  7. Kim HK, Yoon HJ, You SM, Lee KY, Park HY, Kang MH. Effects of Rosiglitazone on Body Fat Mass and Distribution in Type 2 Diabetic Patients. J Kor Diabetes Assoc 2003;27:272-9.
  8. Larsen TM, Toubro S, Astrup A. PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disord 2003;27:147-61.
    Pubmed CrossRef
  9. Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D, Cline GW, et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2002;51:797-802.
    Pubmed KoreaMed CrossRef
  10. Albrektsen T, Frederiksen KS, Holmes WE, Boel E, Taylor K, Fleckner J. Novel genes regulated by the insulin sensitizer rosiglitazone during adipocyte differentiation. Diabetes 2002;51:1042-51.
    Pubmed CrossRef
  11. Adams M, Montague CT, Prins JB, Holder JC, Smith SA, Sanders L, et al. Activators of peroxisome proliferator-activated receptor- have depot-specific effects on human preadipocyte differentiation. J Clin Invest 1997;100:3149-53.
    Pubmed KoreaMed CrossRef
  12. Lefebvre AM, Laville M, Vega N, Riou JP, van Gaal L, Auwerx J, et al. Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 1998;47:98-103.
    Pubmed CrossRef
  13. Sewter CP, Blows F, Vidal-Puig A, O'Rahilly S. Regional differences in the response of human pre-adipocytes to PPARgamma and RXRalpha agonists. Diabetes 2002;51:718-23.
    Pubmed CrossRef
  14. Bogacka I, Xie H, Bray GA, Smith SR. The effect of pioglitazone on peroxisome proliferator-activated receptor- target genes related to lipid storage in vivo. Diabetes Care 2004;27:1660-7.
    Pubmed CrossRef
  15. Kang JG, Park CY, Ihm SH, Yoo HJ, Park HS, Rhee EJ, et al. Mechanisms of adipose tissue redistribution with rosiglitazone treatment in various adipose depots. Metabolism 2010;59:46-53.
    Pubmed CrossRef
  16. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002;8:1288-95.
    Pubmed CrossRef
  17. Yu JG, Javorschi S, Hevener AL, Kruszynska YT, Norman RA, Sinha M, et al. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, type 2 diabetic subjects. Diabetes 2002;51:2968-74.
    CrossRef
  18. Yang WS, Jeng CY, Wu TJ, Tanaka S, Funahashi T, Matsuzawa Y, et al. Synthetic peroxisome proliferatoractivated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 2002;25:376-80.
    Pubmed CrossRef
  19. Tonelli J, Li W, Kishore P, Pajvani UB, Kwon E, Weaver C, et al. Mechanisms of early insulin-sensitizing effects of thiazolidinediones in type 2 diabetes. Diabetes 2004;53:1621-9.
    Pubmed CrossRef
  20. Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 2003;46:459-69.
    Pubmed
  21. Neuschwander-Tetri BA, Brunt EM, Wehmeier KR, Oliver D, Bacon BR. Improved nonalcoholic steatohepatitis after 48 weeks of treatment with the PPAR-gamma ligand rosiglitazone. Hepatology 2003;38:1008-17.
    Pubmed CrossRef
  22. Promrat K, Lutchman G, Uwaifo GI, Freedman RJ, Soza A, Heller T, et al. A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis. Hepatology 2004;39:188-96.
    Pubmed CrossRef
  23. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004;114:147-52.
    CrossRef
  24. Nakamuta M, Kohjima M, Morizono S, Kotoh K, Yoshimoto T, Miyagi I, et al. Evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 2005;16:631-5.
    Pubmed
  25. Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 1997;99:846-54.
    Pubmed KoreaMed CrossRef
  26. Dentin R, P?gorier JP, Benhamed F, Foufelle F, Ferr? P, Fauveau V, et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem 2004;279:20314-26.
    Pubmed CrossRef
  27. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004;114:147-52.
    CrossRef
  28. Yang SJ, Choi JM, Chae SW, Kim WJ, Park SE, Rhee EJ, et al. Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats. PLoS One 2011;6:e17057.
    Pubmed KoreaMed CrossRef
  29. Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010;12:224-36.
    Pubmed KoreaMed CrossRef
  30. Loviscach M, Rehman N, Carter L, Mudaliar S, Mohadeen P, Ciaraldi TP, et al. Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 2000;43:304-11.
    Pubmed CrossRef
  31. Olefsky JM. Treatment of insulin resistance with peroxisome proliferators-activated receptor agonists. J Clin Invest 2000;106:467-72.
    Pubmed KoreaMed CrossRef
  32. Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS, Walton V, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 1998;338:867-72.
    Pubmed CrossRef
  33. Yang Z, Strickland DK, Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem 2001;276:8403-8.
    Pubmed CrossRef
  34. Cha BS, Ciaraldi TP, Park KS, Carter L, Mudaliar SR, Henry RR. Impaired fatty acid metabolism in type 2 diabetic skeletal muscle cells is reversed by PPARgamma agonists. Am J Physiol Endocrinol Metab 2005;289:E151-9.
    Pubmed CrossRef
  35. Hevener AL, He W, Barak Y, Le J, Bandyopadhyay G, Olson P, et al. Muscle-specific Pparg deletion causes insulin resistance. Nat Med 2003;9:1491-7.
    Pubmed CrossRef
  36. Norris AW, Chen L, Fisher SJ, Szanto I, Ristow M, Jozsi AC, et al. Muscle-specific PPAR -deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Invest 2003;112:608-18.
    Pubmed KoreaMed CrossRef
  37. Shao D, Rangwala SM, Bailey ST, Krakow SL, Reginato MJ, Lazar MA. Interdomain communication regulating ligand binding by PPAR-gamma. Nature 1998;396:377-80.
    Pubmed CrossRef
  38. Adams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK. Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 1997;272:5128-32.
    Pubmed CrossRef
  39. Hauser S, Adelmant G, Sarraf P, Wright HM, Mueller E, Spiegelman BM, et al. Degradation of the peroxisome proliferator-activated receptor gamma is linked to ligand-dependent activation. J Biol Chem 2000;275:18527-33.
    Pubmed CrossRef
  40. Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, Ali F, Sholley C, Worrall C, et al. Risk of acute myocardial infarction, stroke, heart failure, death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA 2010;304:411-8.
    Pubmed CrossRef
  41. Wan Y, Chong LW, Evans RM. PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 2007;13:1496-503.
    Pubmed CrossRef
  42. Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 2007;148:2669-80.
    Pubmed KoreaMed CrossRef
  43. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006;355:2427-43.
    Pubmed CrossRef
  44. Habib ZA, Havstad SL, Wells K, Divine G, Pladevall M, Williams LK. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010;95:592-600.
    Pubmed KoreaMed CrossRef
  45. Elstner E, M?ller C, Koshizuka K, Williamson EA, Park D, Asou H, et al. Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 1998;95:8806-11.
    Pubmed KoreaMed CrossRef
  46. Ohta K, Endo T, Haraguchi K, Hershman JM, Onaya T. Ligands for peroxisome proliferator-activated receptor gamma inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells. J Clin Endocrinol Metab 2001;86:2170-7.
    Pubmed CrossRef
  47. Suzuki S, Arnold LL, Pennington KL, Kakiuchi-Kiyota S, Wei M, Wanibuchi H, et al. Effects of pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, on the urine and urothelium of the rat. Toxicol Sci 2010;113:349-57.
    Pubmed CrossRef
  48. Ferrara A, Lewis JD, Quesenberry CP Jr, Peng T, Strom BL, Van Den Eeden SK, et al. Cohort study of pioglitazone and cancer incidence in patients with diabetes. Diabetes Care 2011;34:923-9.
    Pubmed KoreaMed CrossRef
  49. Koga H, Sakisaka S, Harada M, Takagi T, Hanada S, Taniguchi E, et al. Involvement of p21 (WAF1/Cip1), p27 (Kip1), p18 (INK4c) in troglitazone-induced cell-cycle arrest in human hepatoma cell lines. Hepatology 2001;33:1087-97.
    Pubmed CrossRef
  50. Kobuke T, Tazuma S, Hyogo H, Chayama K. A ligand for peroxisome proliferator-activated receptor gamma inhibits human cholangiocarcinoma cell growth: potential molecular targeting strategy for cholangioma. Dig Dis Sci 2006;51:1650-7.
    Pubmed CrossRef
  51. Okano H, Shiraki K, Inoue H, Kawakita T, Deguchi M, Sugimoto K, et al. The PPARgamma ligand, 15-Deoxy-Delta12,14-PGJ2, regulates apoptosis-related protein expression in cholangio cell carcinoma cells. Int J Mol Med 2003;12:867-70.
    Pubmed
  52. Dunn FL, Higgins LS, Fredrickson J, DePaoli AM, INT131-004 study group. Selective modulation of PPAR activity can lower plasma glucose without typical thiazolidinedione side-effects in patients with Type 2 diabetes. J Diabetes Complications 2011;25:151-8.
    Pubmed CrossRef