Journal of Obesity & Metabolic Syndrome

Search

Article

Korean J Obes 2012; 21(1): 65-75

Published online March 30, 2012

Copyright © Korean Society for the Study of Obesity.

Changes of Body Composition, Blood Concentrations of Lipid Profiles and Thyroid Hormone After Exercise Training in Hypothyroid-induced Rat

Kijin Kim*

Department of Physical Education, Keimyung University

Background: This study investigated the mechanism of decreased metabolic function through hypothyroidism induced rats by analyzing its metabolic markers in blood.
This study also examined how treadmill exercise affects blood metabolic markers in hypothyroid rats. This study is to show the importance of exercise training for preventing hypothyroidism induced obesity, diabetes, and atherosclerosis.
Methods: The markers of hypothyroidism and the effects of exercise interventions on thyroid functions were analyzed to measure the function of hypothyroidism in comparison with pre- and post- injections of 6-propyl-2thiouracil (PTU) on rats in the study.
Results: After injections with PTU, rats manifested negative responses in bone mineral content and body composition. Before exercise intervention, PTU group showed a significantly lower value of serum T4 concentration than control group. After eight weeks of exercise training, PTU-Ex group showed a significantly higher value of serum T4 than PTU-non Ex group. Serum T3 concentration showed no significant difference between PTU-Ex group and PTU-non Ex group. Triglyceride and total cholesterol of PTU-Ex group tended to decrease compared to control and PTU-non EX group, and LDL-C of PTU-Ex group tended to decrease unlike in the control group. Also HDL-C of PTU-Ex group did not differ with the control group, and glucose level in PTU-Ex group significantly (P < 0.05) decreased compared to the control group.
Conclusion: Exercise training has positive effects on hypothyroidism in terms of serum T4 concentration and blood lipid profile improvement.

Keywords: Thyroid gland, Exercise training, Body composition, Hypothyroidism

Fig. 1. Changes of body weight after PTU or exercise intervention.
Fig. 2. Changes of serum T3/T4 ratio after PTU or exercise intervention.
Fig. 3. Comparisons of intervention-mediated changes of serum T3 and T4 between PTU and exercise training.

Changes of body fat after intervention



Changes of bone mineral content after intervention



Changes of serum T3, T4, TSH concentration and thyroid gland weight after PTU or exercise intervention



Changes of serum concentration of glucose and lipid profiles after PTU or exercise intervention


  1. Lesile J, Degroot J, Larry, Jameson, David de Kretster. Endocrinology. 5th ed. Philadelphia: Elsevier Saunders; 2006. p. 20-81.
  2. Kim KA, Chung JH, Kim YS, Ahn KJ, Koh EM, Min YK, et al. Serum Lipoprotein (a) and Lipid Concentrations in Patients with Subelinical Hypothyroidism. Endocrinol Metab 1997;12:11-7.
  3. Cho BY. Clinical Thyroidology. 2nd ed. Seoul: Korea Medical Book Publisher; 2005. p.409-35.
  4. Shong YK, Oh YS. Thyroidology. 2nd ed. Seoul:Korea Medical Book Publisher 1995. p.226-31.
  5. Korean Endocorine Society, Min HK. Endocrinology. Seoul: Korea Medical Book Publisher 1999. p.301-4.
  6. Laurberg P, Anderser S, Bulow Pedersen I, Carle A. Hypothyroidism in the elderly: pathophyology, diagnosis and treament. Drugs Aging 2005;22:23-38.
    Pubmed CrossRef
  7. Mosekilde L, Melsen F. Morphometric and dynamic studies of bone changes in hypothyroidism. Acta Pathol Microbiol Scand A 1978;86:56-62.
    CrossRef
  8. Coindre JM, David JP, Riviere L, Goussot JF, Roger P, de Mascarel A, et al. Bone loss in hypothyroidism with hormone replacement. A histomorphometric study. Arch Intern Med 1986;146:48-53.
    Pubmed CrossRef
  9. Bertoli A, Fusco A, Andreoli A, Magnani A, Tulli A, Lauro D, et al. Effect of subclinical hypothyroidism and obesity on whole-body and regional bone mineral content. Horm Res 2002;57:79-84.
    Pubmed CrossRef
  10. Vestergaard P, Mosekilde L. Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid 2002;12:411-9.
    Pubmed CrossRef
  11. Abe E, Marians RC, Yu W, Wu XB, Ando T, Li Y, et al. TSH is a negative regulator of skeletal remodeling. Cell 2003;115:151-62.
    CrossRef
  12. Cooper DS, Halpern R, Wood LC, Levin AA, Ridgway ED. L-thyroxine therapy in subclinical hypothyroidism. A double-blind, placebo-controlled trial. Ann Intern Med 1984;101:18-24.
    Pubmed CrossRef
  13. Caron PH, Calazel C, Parra HJ, Hoff M, Louvet JP. Decreased HDL Cholesterol in subclinical hypothyroidism:The Effect of L-thyroxine therapy. Clin Endocrinol 1990;33:519-23.
    CrossRef
  14. Arem R, Patsch W. Lipoprotein and apolipoprotein levels in subclinical hypothyroidism. Effect of levothyroxine therapy. Arch Intern Med 1990;150:2097-100.
    Pubmed CrossRef
  15. Aviram M, Luboshizky P, Brook JG. Lipid and lipoprotein pattern in thyroid dysfunction and the effect of therapy. Clin Biochem 1982;15:62-6.
    CrossRef
  16. Han SI, Jeon HY, Yun YH, Yoo TW, Huh BY. The assoeiation between total cholesterol and elevated thyrotropin. J Korean Acad Fam Med 1998;19:452-8.
  17. Fisher DA. Physiological variations in thyroid hormones: physiological and patho physiological considerations. Clin Chem 1996;42:135-9.
    Pubmed
  18. Lee JA, Hinchcliff KW, Piercy RJ, Schmidt KE, Nelson S Jr. Effects of racing and nontraining on plasma thyroid hormone concentrations in sled dogs. J Am Vet Med Assoc 2004;224:226-31.
    Pubmed CrossRef
  19. Tremblay A, Fontaine E, Poehlman ET, Mitchell D, Perron L, Bouchard C. The effect of exercise-training on resting metabolic rate in lean and moderately obese individuals. Int J Obesity 1986;10:511-7.
    Pubmed
  20. Evason MD, Carr AP, Taylor SM, Waldner CL. Alterations in thyroid hormone concentrations in healthy sled dogs before and after athletic conditioning. Am J Vet Res 2004;65:333-7.
    Pubmed CrossRef
  21. Baylor LS, Hackney AC. Resting thyroid and leptin hormone changes in women following intense, prolonged exercise training. Eur J Appl Physiol 2003;88:480-4.
    Pubmed CrossRef
  22. Fiebig RG, Hollander JM, Ney D, Boileau R, Jeffery E, Ji LL. Training down-regulates fatty acid synthase and body fat in obese Zucker rats. Med Sci Sports Exerc 2002;34:1106-14.
    Pubmed CrossRef
  23. Gorla-Bajszczak A, Siegrist-Kaiser C, Boss O, Burger AG, Meier CA. Expression of peroxisome proliferator -activated receptors in lean and obese Zucker rats. Eur J Endocrinol 2000;142:71-8.
    Pubmed CrossRef
  24. Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem 1974;20:470-5.
    Pubmed
  25. Wahlefeld RW, Bergmeyer HV. Methoden der enzymatiochen analyse. 3rd ed. Germany(Weinheim):Verlog Chemilweinheim; 1974. p.1878.
    Pubmed
  26. Warnick GR, Nguyen T, Albers AA. Comparison of improved precipitation methods for quantification of high-density lipoprotein cholesterol. Clin Chem 1985;31:217-22.
    Pubmed
  27. Yoon HJ, Shin HC, Choi JH, Hur YS, Hong SB, Kim YS, et al. The Relationship between Thyroid Hormone and Metabolic Syndrome in Obese Euthyroid Adults. Korean J Obes 2008;17:10-9.
  28. Fortunato RS, Ignacio DL, Padron AS, Pecanha R, Marassi MP, Rosenthal D, et al. The effect of acute exercise session on thyroid hormone economy in rats. J Endocrinol 2008;198:347-53.
    Pubmed CrossRef
  29. Park KS, Rue JI, Kim SK, Kim IJ, Lim SW, Park SW, et al. Comparison of Common Carotid Artery Intima-Media Thickness between Subclinical Hypothyroidism and Euthyroidism. Endocrinol Metab 2006;21:490-6.
    CrossRef
  30. Kim MS, Yoon CY, Cho YM, Jung HS, Shin CS, Park KS, et al. Changes in Plasma Leptin Levels Relating to Short-Term Thyroid Manipulation in Rats. Endocrinol Metab 2002;17:197-205.
  31. Owen PJ, Lazarus JH. Subclinical hypothroidism: the case for treatment. Trends Endocrinol Metab 2003;14:257-61.
    CrossRef
  32. Lehninger AL, Nelson DL, Cox MM. Principle of Biochemistry. 2nd ed. New York: Worth Publishers;2001. p.752.
  33. Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest 2006;116:2571-9.
    Pubmed KoreaMed CrossRef
  34. Mastorakos G, Pavlatou M. Exercise as a stress model and the interplay between the hypothalamus-pituitary -adrenal and the hypothalamus-pituitary-thyroid axes. Horm Metab Res 2005;37:577-84.
    Pubmed CrossRef
  35. Ciloglu F, Peker I, Pehlivan A, Karacabey K, Ilhan N, Saygin O, et al. Exercise intensity and its effects on thyroid hormones. Neuro Endocrinol Lett 2005;26:830-4.
    Pubmed
  36. Wirth A, Holm G, Lindstedt G, Lundberg PA, Bjorntorp P. Thyroid hormones and lipolysis in physically trained rats. Metabolism 1981;30:237-41.
    CrossRef
  37. Sullo A, Brizzi G, Maffulli N. Deiodinating activity in the brown adipose tissue of rats following short cold exposure after strenuous exercise. Physiol Behav 2003;80:399-403.
    Pubmed CrossRef
  38. Limanova Z, Sonka J, Kratochvil O, Sonka K, Kanka J, Sprynarova S. Effects of exercise on serum cortisol and thyroid hormones. Exp Clin Endocrinol 1983;81:308-14.
    Pubmed CrossRef
  39. Ahren B, Bengtsson HI, Hedner P. Effects of norepinephrine on basal and thyrotropin-stimulated thyroid hormone secretion in the mouse. Endocrinology 1986;119:1058-62.
    Pubmed CrossRef
  40. Coggan AR, Raguso CA, Gastaldelli A, Sidossis LS, Yeckel CW. Fat metabolism during high-intensity exercise in endurance-trained and untrained men. Metabolism 2000;49:122-8.
    CrossRef
  41. Krotkiewski M, Sjostrom L, Sullivan L, Lundberg PA, Lundbedt G, Wetterqvist H, et al. The effect of acute a chronic exercise on thyroid hormones in obesity. Acta Med Scand 1984;216:269-75.
    Pubmed CrossRef
  42. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 2002;23:38-89.
    Pubmed CrossRef
  43. Cappola AR, Ladenson PW. Hypothyroidism and atherosclerosis. J Clin Endocrinol Metab 2003;88:2438 -44.
    Pubmed CrossRef
  44. Caraccio N, Ferrannini E, Monzani F. Lipoprotein profile in subclinical hypothyroidism: Response to Levothyroxine replacement, a randomized placebo -controlled study. J Clin Endocrinol Metab 2002;87:1533-8.
    Pubmed CrossRef
  45. Silva JE. Thyroid hormone control of thermogenesis and energy balance. Thyroid 1995;5:481-92.
    Pubmed CrossRef
  46. Cugini P, Paggi A, Cristina G, Ceccotti P, Pellegrino AM, Fontana S, et al. Hunger sensation in Graves'disease before and after pharmacological therapy. Clin Ther 1999;150:115-9.
  47. Vanhaelst L, Neve P, Chailly P, Basteine PA. Coronary artery disease in hypothyroidism. Lancet 1967;290:800-2.
    CrossRef
  48. Roos A, Bakker SJ, Links TP, Gans RO, Wolffenbuttel BH. Thyroid Function Is Associated with Components of the Metabolic Syndrome in Euthyroid Subjects. J Clinic Endocrinol Metab 2007;92:491-6.
    Pubmed CrossRef
  49. Boisseau N, Delamarche P, Rannou F, Bentue-Ferrer D, Gratas-Delamarche A. Effects of glucose ingestion at the onset of moderate-intensity, prolonged exercise in women as compared to men. Eur J Appl Physiol 2000;81:93-9.
    Pubmed CrossRef
  50. Blaak EE, van Aggel-Leijissen DP, Wagenmakers AJ, Saris WH, van Baak MA. Impaired oxidation of plasma-derived fatty acids in type 2 diabetic subjects during modearte-intensity exercise. Diabetes 2000;49:2102-7.
    Pubmed CrossRef
  51. Cho HK, Jang YS. Obesity and Atherosclerosis. Korean J Obes 2004;13(Suppl 2):49-56.
  52. Viru AM, Hackney AC, Valja E, Karelson K, Janson T, Viru M. Influence of prolonged continuous exercise on hormone responses to subsequent exercise in humans. Eur J Appl Physiol 2001;85:578-85.
    Pubmed CrossRef
  53. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR. Serum immunoreactive -leptin concentrations in normal-weight and obese humans. N Engl J Med 1996;334:292-5.
    Pubmed CrossRef
  54. Iemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, Matsuda M, et al. Exercise training improves cardiac function-related gene levels through thyroid hormone receptor signaling in aged rats. Am J Physiol Heart Circ Physiol 2004;286:H1696-705.
    Pubmed CrossRef
  55. Branvold DJ, Allred DR, Beckstead DJ, Kim HJ, Fillmore N, Condon BM, et al. Thyroid hormone effects on LKB1, MO25, phosphor-AMPK, phosphor -CREB, PGC-1 in rat muscle. J Appl Physiol 2008;105:1218-27.
    Pubmed CrossRef
  56. Thomson DM, Porter BB, Tall JH, Kim HJ, Barrow JR, Winder WW. Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice. Am J Physiol Endocrinol Metab 2007;292:E196-202.
    Pubmed CrossRef
  57. Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 2000;88:2219-26.
    Pubmed
  58. Hardie DG. AMP-activated protein kinase as a drug target. Annu Rev Pharmacol Toxicol 2007;47:185 -210.
    Pubmed CrossRef
  59. Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 1999;277:E1-10.
    Pubmed
  60. Schimmack G, Defronzo RA, Musi N. AMP-activated protein kinase: role in metabolism and therapeutic implications. Diabetes Obes Metab 2006;8:591-602.
    Pubmed CrossRef
  61. Mutvei A, Husman B, Andersson G, Nelson BD. Thyroid hormone and not growth hormone is the principle regulator of mammalian mitochondrial biogenesis. Acta Endocrinol 1989;121:223-8.
    CrossRef
  62. Wooten WL, Cascarano J. The effect of thyroid hormone on mitochondrial biogenesis and cellular hyperplasia. J Bioenerg Biomembr 1980;12:1-12.
    CrossRef
  63. Goldenthal MJ, Weiss HR, Marin-Garcia J. Bioenergetic remodeling of heart mitochondria by thyroid hormone. Mol Cell Biochem 2004;265:97-106.
    Pubmed CrossRef