Journal of Obesity & Metabolic Syndrome

Search

Article

Korean J Obes 2014; 23(4): 222-230

Published online December 30, 2014

Copyright © Korean Society for the Study of Obesity.

Regulation of Iron and Its Significance in Obesity and Complications

Yee Kwan Chan, Hye Kyoung Sung, Gary Sweeney*

Department of Biology, York University, Toronto, Canada

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Iron is an essential micronutrient with important roles in many critical physiological processes, especially as a structural component of hemoglobin responsible for oxygen transport. Iron homeostasis is tightly regulated, yet perturbations resulting in iron deficiency as well as iron overload are linked with obesity and associated metabolic abnormalities, such as insulin resistance and type 2 diabetes. The endocrine system plays an active role in regulating iron homeostasis and here we have highlighted the importance of lipocalin-2 (Lcn2) and hepcidin. Circulating and adipose tissue expression of the proinflammatory Lcn2 are elevated in obesity and this may be an important, and underestimated, regulator of iron homeostasis. Hepcidin is also markedly elevated during obesity and by inducing the internalization of ferroportin, it leads to an accumulation of tissue iron stores but deficiency in circulating iron, a key feature of functional iron deficiency. Due to the critical importance of iron homeostasis in health and disease, there are currently several well established methods for clinical diagnosis of iron levels and various therapeutics have proven effective in restoring normal iron level in iron deficient or overload conditions. Further explorations in the endocrine regulation of iron homeostasis are warranted to develop a better understanding of the pathophysiological roles of iron in obesity and related metabolic diseases.

Keywords: Iron, Iron deficiency, Iron overload, Lipocalin-2

Fig. 1. An imbalance of iron homeostasis has been observed in obesity. Iron overload (blue box, right) and iron deficiency (ID; blue box, left) have both been reported and the latter can be either absolute or functional. Both iron overload and ID have been associated with development of complications which occur in obesity (green box, top). Various therapeutic strategies commonly used to correct iron overload or ID and restore normal iron homeostasis are shown (orange boxes).
  1. Leong WI, L?nnerdal B. Iron nutrition. In: Anderson GJ, McLaren GD, Editors. Iron physiology and pathophysiology in humans. New York: Springer; 2012. p. 81-99.
    Pubmed CrossRef
  2. Sharp PA. Intestinal iron absorption: regulation by dietary & systemic factors. Int J Vitam Nutr Res 2010;80:231-42.
    Pubmed CrossRef
  3. Brissot P, Ropert M, Le Lan C, Lor?al O. Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim Biophys Acta 2012;1820:403-10.
    Pubmed CrossRef
  4. Ganz T. Systemic iron homeostasis. Physiol Rev 2013;93:1721-41.
    Pubmed CrossRef
  5. Wenzel BJ, Stults HB, Mayer J. Hypoferraemia in obese adolescents. Lancet 1962;2:327-8.
    CrossRef
  6. Pinhas-Hamiel O, Newfield RS, Koren I, Agmon A, Lilos P, Phillip M. Greater prevalence of iron deficiency in overweight and obese children and adolescents. Int J Obes Relat Metab Disord 2003;27:416-8.
    Pubmed CrossRef
  7. Nead KG, Halterman JS, Kaczorowski JM, Auinger P, Weitzman M. Overweight children and adolescents: a risk group for iron deficiency. Pediatrics 2004;114:104-8.
    Pubmed CrossRef
  8. Phillips AK, Roy SC, Lundberg R, Guilbert TW, Auger AP, Blohowiak SE, et al. Neonatal iron status is impaired by maternal obesity and excessive weight gain during pregnancy. J Perinatol 2014;34:513-8.
    Pubmed KoreaMed CrossRef
  9. Milman N. Anemia--still a major health problem in many parts of the world! Ann Hematol 2011;90:369-77.
    Pubmed CrossRef
  10. Cohen-Solal A, Leclercq C, Deray G, Lasocki S, Zambrowski JJ, Mebazaa A, et al. Iron deficiency: an emerging therapeutic target in heart failure. Heart 2014;100:1414-20.
    Pubmed CrossRef
  11. Nestorowicz A. Word about a good medical journal. Anaesthesiol Intensive Ther 2012;44:115-6.
    Pubmed
  12. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, B?hm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 2012;33:1787-847.
    Pubmed CrossRef
  13. Gillum RF. Association of serum ferritin and indices of body fat distribution and obesity in Mexican American men--the Third National Health and Nutrition Examination Survey. Int J Obes Relat Metab Disord 2001;25:639-45.
    Pubmed CrossRef
  14. Gartner A, Berger J, Bour A, El Ati J, Traissac P, Landais E, et al. Assessment of iron deficiency in the context of the obesity epidemic:importance of correcting serum ferritin concentrations for inflammation. Am J Clin Nutr 2013;98:821-6.
    Pubmed CrossRef
  15. Wish JB. Assessing iron status: beyond serum ferritin and transferrin saturation. Clin J Am Soc Nephrol 2006;1 Suppl 1:4-8.
    Pubmed CrossRef
  16. Freixenet N, Remacha A, Berlanga E, Caix?s A, Gim?nez-Palop O, Blanco-Vaca F, et al. Serum soluble transferrin receptor concentrations are increased in central obesity. Results from a screening programme for hereditary hemochromatosis in men with hyperferritinemia. Clin Chim Acta 2009;400:111-6.
    Pubmed CrossRef
  17. Beavers CJ, Alburikan KA, Rodgers JE, Dunn SP, Reed BN. Distinguishing anemia and iron deficiency of heart failure: signal for severity of disease or unmet therapeutic need? Pharmacotherapy 2014;34:719-32.
    Pubmed CrossRef
  18. World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva: World Health Organization;2011. p. 1-6.
  19. van der Putten K, Braam B, Jie KE, Gaillard CA. Mechanisms of Disease: erythropoietin resistance in patients with both heart and kidney failure. Nat Clin Pract Nephrol 2008;4:47-57.
    Pubmed CrossRef
  20. Correia Horvath JD, Dias de Castro ML, Kops N, Kruger Malinoski N, Friedman R. Obesity coexists with malnutrition? Adequacy of food consumption by severely obese patients to dietary reference intake recommendations. Nutr Hosp 2014;29:292-9.
    Pubmed
  21. Bertinato J, Aroche C, Plouffe LJ, Lee M, Murtaza Z, Kenney L, et al. Diet-induced obese rats have higher iron requirements and are more vulnerable to iron deficiency. Eur J Nutr 2014;53:885-95.
    Pubmed CrossRef
  22. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1821-30.
    Pubmed KoreaMed CrossRef
  23. Ausk KJ, Ioannou GN. Is obesity associated with anemia of chronic disease? A population-based study. Obesity (Silver Spring) 2008;16:2356-61.
    Pubmed CrossRef
  24. Ganz T. Molecular pathogenesis of anemia of chronic disease. Pediatr Blood Cancer 2006;46:554-7.
    Pubmed CrossRef
  25. Chung B, Matak P, McKie AT, Sharp P. Leptin increases the expression of the iron regulatory hormone hepcidin in HuH7 human hepatoma cells. J Nutr 2007;137:2366-70.
    Pubmed
  26. Gotardo ?M, dos Santos AN, Miyashiro RA, Gambero S, Rocha T, Ribeiro ML, et al. Mice that are fed a high-fat diet display increased hepcidin expression in adipose tissue. J Nutr Sci Vitaminol (Tokyo) 2013;59:454-61.
    CrossRef
  27. Tussing-Humphreys LM, Nemeth E, Fantuzzi G, Freels S, Guzman G, Holterman AX, et al. Elevated systemic hepcidin and iron depletion in obese premenopausal females. Obesity (Silver Spring) 2010;18:1449-56.
    Pubmed CrossRef
  28. Luciani N, Brasse-Lagnel C, Poli M, Anty R, Lesueur C, Cormont M, et al. Hemojuvelin: a new link between obesity and iron homeostasis. Obesity (Silver Spring) 2011;19:1545-51.
    Pubmed CrossRef
  29. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006;444:840-6.
    Pubmed CrossRef
  30. Tuomainen TP, Nyyss?nen K, Salonen R, Tervahauta A, Korpela H, Lakka T, et al. Body iron stores are associated with serum insulin and blood glucose concentrations. Population study in 1,013 eastern Finnish men. Diabetes Care 1997;20:426-8.
    Pubmed CrossRef
  31. Dmochowski K, Finegood DT, Francombe W, Tyler B, Zinman B. Factors determining glucose tolerance in patients with thalassemia major. J Clin Endocrinol Metab 1993;77:478-83.
    Pubmed CrossRef
  32. Davis RJ, Corvera S, Czech MP. Insulin stimulates cellular iron uptake and causes the redistribution of intracellular transferrin receptors to the plasma membrane. J Biol Chem 1986;261:8708-11.
    Pubmed
  33. Schmitt B, Golub RM, Green R. Screening primary care patients for hereditary hemochromatosis with transferrin saturation and serum ferritin level: systematic review for the American College of Physicians. Ann Intern Med 2005;143:522-36.
    Pubmed CrossRef
  34. Sangani RG, Ghio AJ. Iron, human growth, the global epidemic of obesity. Nutrients 2013;5:4231-49.
    Pubmed KoreaMed CrossRef
  35. Cooksey RC, Jones D, Gabrielsen S, Huang J, Simcox JA, Luo B, et al. Dietary iron restriction or iron chelation protects from diabetes and loss of beta-cell function in the obese (ob/ob lep-/-) mouse. Am J Physiol Endocrinol Metab 2010;298:E1236-43.
    Pubmed KoreaMed CrossRef
  36. Creighton Mitchell T, McClain DA. Diabetes and hemochromatosis. Curr Diab Rep 2014;14:488.
    Pubmed CrossRef
  37. Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores:a mini review. J Basic Microbiol 2013;53:303-17.
    Pubmed CrossRef
  38. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004;432:917-21.
    Pubmed CrossRef
  39. Sia AK, Allred BE, Raymond KN. Siderocalins: siderophore binding proteins evolved for primary pathogen host defense. Curr Opin Chem Biol 2013;17:150-7.
    Pubmed KoreaMed CrossRef
  40. Cruz DN, Gaiao S, Maisel A, Ronco C, Devarajan P. Neutrophil gelatinase-associated lipocalin as a biomarker of cardiovascular disease: a systematic review. Clin Chem Lab Med 2012;50:1533-45.
    Pubmed KoreaMed CrossRef
  41. Sommer P, Sweeney G. Functional and mechanistic integration of infection and the metabolic syndrome. Korean Diabetes J 2010;34:71-6.
    Pubmed KoreaMed CrossRef
  42. Flower DR. The lipocalin protein family: structure and function. Biochem J 1996;318:1-14.
    Pubmed KoreaMed
  43. Ley RE, B?ckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005;102:11070-5.
    Pubmed KoreaMed CrossRef
  44. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761-72.
    Pubmed CrossRef
  45. Srinivasan G, Aitken JD, Zhang B, Carvalho FA, Chassaing B, Shashidharamurthy R, et al. Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis. J Immunol 2012;189:1911-9.
    Pubmed KoreaMed CrossRef
  46. Layoun A, Huang H, Calv? A, Santos MM. Toll-like receptor signal adaptor protein MyD88 is required for sustained endotoxininduced acute hypoferremic response in mice. Am J Pathol 2012;180:2340-50.
    Pubmed CrossRef
  47. Moreno-Navarrete JM, Manco M, Ib??ez J, Garc?a-Fuentes E, Ortega F, Gorostiaga E, et al. Metabolic endotoxemia and saturated fat contribute to circulating NGAL concentrations in subjects with insulin resistance. Int J Obes (Lond) 2010;34:240-9.
    Pubmed CrossRef
  48. Lou Y, Wu C, Wu M, Xie C, Ren L. The changes of neutrophil gelatinase-associated lipocalin in plasma and its expression in adipose tissue in pregnant women with gestational diabetes. Diabetes Res Clin Pract 2014;104:136-42.
    Pubmed CrossRef
  49. Catalan V, G?mez-Ambrosi J, Rodr?guez A, Ram?rez B, Silva C, Rotellar F, et al. Increased adipose tissue expression of lipocalin-2 in obesity is related to inflammation and matrix metalloproteinase-2 and metalloproteinase-9 activities in humans. J Mol Med (Berl) 2009;87:803-13.
    Pubmed CrossRef
  50. Koiou E, Tziomalos K, Katsikis I, Kandaraki EA, Kalaitzakis E, Delkos D, et al. Weight loss significantly reduces serum lipocalin-2 levels in overweight and obese women with polycystic ovary syndrome. Gynecol Endocrinol 2012;28:20-4.
    Pubmed CrossRef
  51. Law IK, Xu A, Lam KS, Berger T, Mak TW, Vanhoutte PM, et al. Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes 2010;59:872-82.
    Pubmed KoreaMed CrossRef
  52. Recalcati S, Locati M, Marini A, Santambrogio P, Zaninotto F, De Pizzol M, et al. Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol 2010;40:824-35.
    Pubmed CrossRef
  53. Orr JS, Kennedy A, Anderson-Baucum EK, Webb CD, Fordahl SC, Erikson KM, et al. Obesity alters adipose tissue macrophage iron content and tissue iron distribution. Diabetes 2014;63:421-32.
    Pubmed KoreaMed CrossRef
  54. Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH, et al. Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J 2013;27:1176-90.
    Pubmed CrossRef
  55. Warszawska JM, Gawish R, Sharif O, Sigel S, Doninger B, Lakovits K, et al. Lipocalin 2 deactivates macrophages and worsens pneumococcal pneumonia outcomes. J Clin Invest 2013;123:3363-72.
    Pubmed KoreaMed CrossRef
  56. Merle U, Fein E, Gehrke SG, Stremmel W, Kulaksiz H. The iron regulatory peptide hepcidin is expressed in the heart and regulated by hypoxia and inflammation. Endocrinology 2007;148:2663-8.
    Pubmed CrossRef
  57. Bekri S, Gual P, Anty R, Luciani N, Dahman M, Ramesh B, et al. Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 2006;131:788-96.
    Pubmed CrossRef
  58. Sow FB, Florence WC, Satoskar AR, Schlesinger LS, Zwilling BS, Lafuse WP. Expression and localization of hepcidin in macrophages:a role in host defense against tuberculosis. J Leukoc Biol 2007;82:934-45.
    Pubmed CrossRef
  59. Ganz T. Hepcidin and its role in regulating systemic iron metabolism. Hematology Am Soc Hematol Educ Program 2006;2006:2935.
    CrossRef
  60. Maury E, No?l L, Detry R, Brichard SM. In vitro hyperresponsiveness to tumor necrosis factor-alpha contributes to adipokine dysregulation in omental adipocytes of obese subjects. J Clin Endocrinol Metab 2009;94:1393-400.
    Pubmed CrossRef
  61. Gabrielsen JS, Gao Y, Simcox JA, Huang J, Thorup D, Jones D, et al. Adipocyte iron regulates adiponectin and insulin sensitivity. J Clin Invest 2012;122:3529-40.
    Pubmed KoreaMed CrossRef
  62. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004;306:2090-3.
    Pubmed CrossRef
  63. Dale JC, Burritt MF, Zinsmeister AR. Diurnal variation of serum iron, iron-binding capacity, transferrin saturation, ferritin levels. Am J Clin Pathol 2002;117:802-8.
    Pubmed CrossRef
  64. Guyatt GH, Oxman AD, Ali M, Willan A, McIlroy W, Patterson C. Laboratory diagnosis of iron-deficiency anemia: an overview. J Gen Intern Med 1992;7:145-53.
    Pubmed CrossRef
  65. Piperno A. Classification and diagnosis of iron overload. Haematologica 1998;83:447-55.
    Pubmed
  66. Jelani QU, Katz SD. Treatment of anemia in heart failure: potential risks and benefits of intravenous iron therapy in cardiovascular disease. Cardiol Rev 2010;18:240-50.
    Pubmed KoreaMed CrossRef
  67. Santiago P. Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. ScientificWorldJournal 2012;2012:846824.
    Pubmed KoreaMed CrossRef
  68. Zhu A, Kaneshiro M, Kaunitz JD. Evaluation and treatment of iron deficiency anemia: a gastroenterological perspective. Dig Dis Sci 2010;55:548-59.
    Pubmed KoreaMed CrossRef
  69. Silverberg DS, Wexler D, Sheps D, Blum M, Keren G, Baruch R, et al. The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study. J Am Coll Cardiol 2001;37:1775-80.
    CrossRef
  70. Mancini DM, Katz SD, Lang CC, LaManca J, Hudaihed A, Androne AS. Effect of erythropoietin on exercise capacity in patients with moderate to severe chronic heart failure. Circulation 2003;107:294-9.
    Pubmed CrossRef
  71. Palazzuoli A, Silverberg D, Iovine F, Capobianco S, Giannotti G, Calabr? A, et al. Erythropoietin improves anemia exercise tolerance and renal function and reduces B-type natriuretic peptide and hospitalization in patients with heart failure and anemia. Am Heart J 2006;152:1096. e9-15.
  72. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;62:e147-239.
    Pubmed CrossRef
  73. Kontoghiorghe CN, Kolnagou A, Kontoghiorghes GJ. Potential clinical applications of chelating drugs in diseases targeting transferrin-bound iron and other metals. Expert Opin Investig Drugs 2013;22:591-618.
    Pubmed CrossRef
  74. Olivieri NF, Brittenham GM, McLaren CE, Templeton DM, Cameron RG, McClelland RA, et al. Long-term safety and effectiveness of iron-chelation therapy with deferiprone for thalassemia major. N Engl J Med 1998;339:417-23.
    Pubmed CrossRef

Share this article on :