Journal of Obesity & Metabolic Syndrome

Search

Article

Korean J Obes 2014; 23(3): 150-155

Published online September 30, 2014

Copyright © Korean Society for the Study of Obesity.

Exosomes and Microvesicles as Biomarkers in Metabolic Diseases

Seong-Kyu Lee*

Department of Biochemistry-Molecular Biology1, School of Medicine, Eulji University, Daejoen; Department of Internal Medicine2, Division of Endocrinology, Eulji University Hospital, Daejeon, Korea

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Currently used biomarkers in metabolic diseases are neither sufficient for monitoring the stage of disease development nor for monitoring differences among patients with different underlying pathogenetic pathways and pathogenesis. Exosomes and microvesicles, which are released from a wide variety of tissues, cells and blood cells in response to normal or stressed state, and under pathogenic conditions, contain various proteins, mRNAs, miRNAs and etc. that reflect the diverse functional and dysfunctional states of the releasing cells and tissues. Therefore, exosomes and microvesicles could be the next potential new biomarkers that could help predict, diagnose, treat and monitor prognosis of metabolic diseases as in obesity. Exosomes and microvesicles may overcome limitations of current biomarkers once their characteristics are clarified and methods for easier detection are developed.

Keywords: Exosomes, Microvesicles, Biomarkers, Metabolic diseases

  1. M?ller G. Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab Syndr Obes 2012;5:247-82.
    Pubmed KoreaMed CrossRef
  2. Kranendonk ME, de Kleijn DP, Kalkhoven E, Kanhai DA, Uiterwaal CS, van der Graaf Y, et al. Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovasc Diabetol 2014;13:37.
    Pubmed KoreaMed CrossRef
  3. Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res 2014;114:345-53.
    Pubmed CrossRef
  4. Ohno S, Ishikawa A, Kuroda M. Roles of exosomes and microvesicles in disease pathogenesis. Adv Drug Deliv Rev 2013;65:398-401.
    Pubmed CrossRef
  5. M?ller G. Studying exosomes and microvesicles - For a better understanding of metabolic diseases? Biological and Biomedical Reports 2011;1:27-45.
  6. F?vrier B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 2004;16:415-21.
    Pubmed CrossRef
  7. van Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: a common pathway for a specialized function. J Biochem 2006;140:13-21.
    Pubmed CrossRef
  8. Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 2011;1:98-110.
    Pubmed KoreaMed
  9. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol 2009;19:43-51.
    Pubmed CrossRef
  10. Piccin A, Murphy WG, Smith OP. Circulating microparticles:pathophysiology and clinical implications. Blood Rev 2007;21:157-71.
    Pubmed CrossRef
  11. Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux JF, et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 2004;380:161-71.
    Pubmed KoreaMed CrossRef
  12. Hogan MC, Manganelli L, Woollard JR, Masyuk AI, Masyuk TV, Tammachote R, et al. Characterization of PKD protein-positive exosome-like vesicles. J Am Soc Nephrol 2009;20:278-88.
    Pubmed KoreaMed CrossRef
  13. Zhou R, O’Hara SP, Chen XM. MicroRNA regulation of innate immune responses in epithelial cells. Cell Mol Immunol 2011;8:371-9.
    Pubmed KoreaMed CrossRef
  14. Masyuk AI, Huang BQ, Ward CJ, Gradilone SA, Banales JM, Masyuk TV, et al. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol 2010;299:G990-9.
    Pubmed KoreaMed CrossRef
  15. Rupp AK, Rupp C, Keller S, Brase JC, Ehehalt R, Fogel M, et al. Loss of EpCAM expression in breast cancer derived serum exosomes:role of proteolytic cleavage. Gynecol Oncol 2011;122:43746.
    Pubmed CrossRef
  16. Th?ry C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 2011;3:15.
    Pubmed KoreaMed CrossRef
  17. Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, M?bius W, Hoernschemeyer J, et al. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 2003;278:10963-72.
    Pubmed CrossRef
  18. Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 2007;89:205-12.
    Pubmed CrossRef
  19. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001;294:853-8.
    Pubmed CrossRef
  20. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, function. Cell 2004;116:281-97.
    CrossRef
  21. Rabinowits G, Ger?el-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 2009;10:42-6.
    Pubmed CrossRef
  22. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008;110:13-21.
    Pubmed CrossRef
  23. Ciesla M, Skrzypek K, Kozakowska M, Loboda A, Jozkowicz A, Dulak J. MicroRNAs as biomarkers of disease onset. Anal Bioanal Chem 2011;401:2051-61.
    Pubmed CrossRef
  24. Li Q, Lin X, Yang X, Chang J. NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. Am J Physiol Heart Circ Physiol 2010;298:H1340-7.
    Pubmed KoreaMed CrossRef
  25. Nakamachi T, Nomiyama T, Gizard F, Heywood EB, Jones KL, Zhao Y, et al. PPARalpha agonists suppress osteopontin expression in macrophages and decrease plasma levels in patients with type 2 diabetes. Diabetes 2007;56:1662-70.
    Pubmed CrossRef
  26. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006;116:115-24.
    Pubmed KoreaMed CrossRef
  27. Varma V, Yao-Borengasser A, Rasouli N, Bodles AM, Phanavanh B, Lee MJ, et al. Human visfatin expression: relationship to insulin sensitivity, intramyocellular lipids, inflammation. J Clin Endocrinol Metab 2007;92:666-72.
    Pubmed KoreaMed CrossRef
  28. Liang CP, Han S, Okamoto H, Carnemolla R, Tabas I, Accili D, et al. Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 2004;113:764-73.
    Pubmed KoreaMed CrossRef
  29. Morrison CD, Huypens P, Stewart LK, Gettys TW. Implications of crosstalk between leptin and insulin signaling during the development of diet-induced obesity. Biochim Biophys Acta 2009;1792:409-16.
    Pubmed KoreaMed CrossRef
  30. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1821-30.
    Pubmed KoreaMed CrossRef
  31. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005;11:191-8.
    Pubmed CrossRef
  32. Cawthorn WP, Sethi JK. TNF-alpha and adipocyte biology. FEBS Lett 2008;582:117-31.
    Pubmed KoreaMed CrossRef
  33. De Taeye BM, Novitskaya T, McGuinness OP, Gleaves L, Medda M, Covington JW, et al. Macrophage TNF-alpha contributes to insulin resistance and hepatic steatosis in diet-induced obesity. Am J Physiol Endocrinol Metab 2007;293:E713-25.
    Pubmed CrossRef
  34. Hoene M, Weigert C. The role of interleukin-6 in insulin resistance, body fat distribution and energy balance. Obes Rev 2008;9:20-9.
    Pubmed
  35. Klover PJ, Clementi AH, Mooney RA. Interleukin-6 depletion selectively improves hepatic insulin action in obesity. Endocrinology 2005;146:3417-27.
    Pubmed CrossRef
  36. Lumeng CN, Deyoung SM, Saltiel AR. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab 2007;292:E166-74.
    Pubmed KoreaMed CrossRef
  37. Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 2009;58:2498-505.
    Pubmed KoreaMed CrossRef
  38. Heneghan HM, Miller N, Kerin MJ. Role of microRNAs in obesity and the metabolic syndrome. Obes Rev 2010;11:354-61.
    Pubmed CrossRef
  39. Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z. A role of miR-27 in the regulation of adipogenesis. FEBS J 2009;276:2348-58.
    Pubmed CrossRef
  40. Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A, et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 2010;5:e9022.
    Pubmed KoreaMed CrossRef
  41. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004;279:52361-5.
    Pubmed CrossRef
  42. Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009;58:1050-7.
    Pubmed KoreaMed CrossRef
  43. M?ller G. Control of lipid storage and cell size between adipocytes by vesicle-associated glycosylphosphatidylinositol-anchored proteins. Arch Physiol Biochem 2011;117:23-43.
    Pubmed CrossRef
  44. Aoki N, Jin-no S, Nakagawa Y, Asai N, Arakawa E, Tamura N, et al. Identification and characterization of microvesicles secreted by 3T3-L1 adipocytes: redox- and hormone-dependent induction of milk fat globule-epidermal growth factor 8-associated microvesicles. Endocrinology 2007;148:3850-62.
    Pubmed CrossRef
  45. Record M, Subra C, Silvente-Poirot S, Poirot M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 2011;81:1171-82.
    Pubmed CrossRef
  46. Cui J, Panse S, Falkner B. The role of adiponectin in metabolic and vascular disease: a review. Clin Nephrol 2011;75:26-33.
    Pubmed
  47. Hulsmans M, De Keyzer D, Holvoet P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J 2011;25:2515-27.
    Pubmed CrossRef
  48. Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, vascular diseases. Eur Heart J 2008;29:2959-71.
    Pubmed CrossRef
  49. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet 2005;366:1640-9.
    CrossRef
  50. Musaad S, Haynes EN. Biomarkers of obesity and subsequent cardiovascular events. Epidemiol Rev 2007;29:98-114.
    Pubmed CrossRef
  51. Kanhai DA, Visseren FL, van der Graaf Y, Schoneveld AH, Catanzariti LM, Timmers L, et al. Microvesicle protein levels are associated with increased risk for future vascular events and mortality in patients with clinically manifest vascular disease. Int J Cardiol 2013;168:2358-63.
    Pubmed CrossRef
  52. Mitchell PJ, Welton J, Staffurth J, Court J, Mason MD, Tabi Z, et al. Can urinary exosomes act as treatment response markers in prostate cancer? J Transl Med 2009;7:4.
    Pubmed KoreaMed CrossRef
  53. Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 2003;39:184-91.
    CrossRef
  54. Helley D, Banu E, Bouziane A, Banu A, Scotte F, Fischer AM, et al. Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxelbased chemotherapy. Eur Urol 2009;56:479-84.
    Pubmed CrossRef