Journal of Obesity & Metabolic Syndrome

Search

Article

Korean J Obes 2011; 20(4): 170-176

Published online December 1, 2011

Copyright © Korean Society for the Study of Obesity.

Calorie Restriction and Obesity under the Regulation of SIRT1

Il Sook Choi, Kyung Ah Kim(1), Jung-Eun Yim(2), Young Seol Kim(3)*

Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Department of Pharmacy, College of Pharmacy Kyung Hee University(1), Department of Food and Nutrition, College of Natural Science, Changwon National University(2), Department of Internal Medicine, School of Medicine, Kyung Hee University(3)

Obesity is one of the most important risk factors for various chronic diseases, especially related with environmental life style and eating habits. Obesity is also a risk factor of metabolic diseases, cardiovascular diseases, diabetes, and certain cancers. Numerous studies of calorie restriction (CR) in various organisms have shown several beneficial effects of not only decreased body fat and blood pressure, decreased inflammatory markers in plasma, increased insulin sensitivity, and improved lipid profile but also improved endothelial function, decreased oxidative damage by reducing energy flux and metabolism, and decreased ectopic fat accumulation. Furthermore, CR
activates SIRT1, a nutrient-sensing deacetylase, involved in metabolic regulation and longevity. Resveratrol, as a mimetic of CR, is one of well-known sirtuin activating compounds. Resveratrol is related with longer lifespan by increasing insulin sensitivity, decreasing insulin-like growth
factor-1, and increasing AMP-activated protein kinase activity. Therefore, the present review focuses on CR related with obesity and also the relationship between CR and SIRT1 in metabolic mechanism levels. Furthermore, we will introduce resveratrol, as an activator of SIRT1, and the
beneficial effects of resveratrol.

Keywords: obesity, calorie restriction, SIRT1, longevity, resveratrol

Fig. 1. Chemical structure of resveratrol.

Mammalian sirtuins


  1. Rolls BJ, Roe LS, Meengs JS. Larger portion sizes lead to a sustained increase in energy intake over 2 days. J Am Diet Assoc 2006;106:543-9.
    Pubmed CrossRef
  2. Astrup A, Dyerberg J, Selleck M, Stender S. Nutrition transition and its relationship to the development of obesity and related chronic diseases. Obes Rev 2008;9 Suppl 1:48-52.
    Pubmed CrossRef
  3. McDonald RB, Ramsey JJ. Honoring Clive McCay and 75 years of calorie restriction research. J Nutr 2010;140:1205-10.
    Pubmed KoreaMed CrossRef
  4. Fontana L, Villareal DT, Weiss EP, Racette SB, Steger-May K, Klein S, et al. Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial. Am J Physiol Endocrinol Metab 2007;293:E197-202.
    Pubmed CrossRef
  5. Zhu M, de Cabo R, Anson RM, Ingram DK, Lane MA. Caloric restriction modulates insulin receptor signaling in liver and skeletal muscle of rat. Nutrition 2005;21:378-88.
    Pubmed CrossRef
  6. Marzetti E, Wohlgemuth SE, Anton SD, Bernabei R, Carter CS, Leeuwenburgh C. Cellular mechanisms of cardioprotection by calorie restriction: state of the science and future perspectives. Clin Geriatr Med 2009;25:715-32.
    Pubmed KoreaMed CrossRef
  7. Holloszy JO, Fontana L. Caloric restriction in humans. Exp Gerontol 2007;42:709-12.
    Pubmed KoreaMed CrossRef
  8. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005;6:298-305.
    Pubmed CrossRef
  9. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 2010;12:662-7.
    Pubmed CrossRef
  10. Kume S, Uzu T, Kashiwagi A, Koya D. SIRT1, a calorie restriction mimetic, in a new therapeutic approach for type 2 diabetes mellitus and diabetic vascular complications. Endocr Metab Immune Disord Drug Targets 2010;10:16-24.
    Pubmed CrossRef
  11. Redman LM, Heilbronn LK, Martin CK, Alfonso A, Smith SR, Ravussin E. Effect of calorie restriction with or without exercise on body composition and fat distribution. J Clin Endocrinol Metab 2007;92:865-72.
    Pubmed KoreaMed CrossRef
  12. Larson-Meyer DE, Heilbronn LK, Redman LM, Newcomer BR, Frisard MI, Anton S, et al. Effect of calorie restriction with or without exercise on insulin sensitivity, beta-cell function, fat cell size, ectopic lipid in overweight subjects. Diabetes Care 2006;29:1337-44.
    Pubmed KoreaMed CrossRef
  13. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, oxidative stress in overweight individuals: a randomized controlled trial. JAMA 2006;295:1539-48.
    Pubmed KoreaMed CrossRef
  14. Anderlova K, Kremen J, Dolezalova R, Housov? J, Haluz?kov? D, Kunesov? M, et al. The influence of very-low-calorie-diet on serum leptin, soluble leptin receptor, adiponectin and resistin levels in obese women. Physiol Res 2006;55:277-83.
    Pubmed
  15. Xydakis AM, Case CC, Jones PH, Hoogeveen RC, Liu MY, Smith EO, et al. Adiponectin, inflammation, the expression of the metabolic syndrome in obese individuals: the impact of rapid weight loss through caloric restriction. J Clin Endocrinol Metab 2004;89:2697-703.
    Pubmed CrossRef
  16. Weiss EP, Racette SB, Villareal DT, Fontana L, Steger-May K, Schechtman KB, et al. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial. Am J Clin Nutr 2006;84:1033-42.
    Pubmed KoreaMed
  17. Mraz M, Lacinova Z, Drapalova J, Haluzikova D, Horinek A, Matoulek M, et al. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2011;96:E606-13.
    Pubmed CrossRef
  18. Reverter-Branchat G, Cabiscol E, Tamarit J, Ros J. Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae:common targets and prevention by calorie restriction. J Biol Chem 2004;279:31983-9.
    Pubmed CrossRef
  19. Guarente L. Sirtuins as potential targets for metabolic syndrome. Nature 2006;444:868-74.
    Pubmed CrossRef
  20. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000;289:2126-8.
    Pubmed CrossRef
  21. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001;410:227-30.
    Pubmed CrossRef
  22. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003;425:191-6.
    Pubmed CrossRef
  23. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006;444:337-42.
    Pubmed CrossRef
  24. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 2007;404:1-13.
    Pubmed KoreaMed CrossRef
  25. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005;16:4623-35.
    Pubmed KoreaMed CrossRef
  26. Huang JY, Hirschey MD, Shimazu T, Ho L, Verdin E. Mitochondrial sirtuins. Biochim Biophys Acta 2010;1804:1645-51.
    Pubmed CrossRef
  27. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004;305:390-2.
    Pubmed CrossRef
  28. Crujeiras AB, Parra D, Goyenechea E, Martinez JA. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Invest 2008;38:672-8.
    Pubmed CrossRef
  29. Geng YQ, Li TT, Liu XY, Li ZH, Fu YC. SIRT1 and SIRT5 activity expression and behavioral responses to calorie restriction. J Cell Biochem 2011;112:3755-61.
    Pubmed CrossRef
  30. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000;403:795-800.
    Pubmed CrossRef
  31. Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annu Rev Biochem 2006;75:435-65.
    Pubmed CrossRef
  32. Imai S, Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 2010;31:212-20.
    Pubmed KoreaMed CrossRef
  33. Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A 2007;104:12861-6.
    Pubmed KoreaMed CrossRef
  34. Erion DM, Yonemitsu S, Nie Y, Nagai Y, Gillum MP, Hsiao JJ, et al. SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc Natl Acad Sci U S A 2009;106:11288-93.
    Pubmed KoreaMed CrossRef
  35. Frescas D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 2005;280:20589-95.
    Pubmed CrossRef
  36. Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 2007;28:91-106.
    Pubmed CrossRef
  37. Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 2010;285:33959-70.
    Pubmed KoreaMed CrossRef
  38. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007;26:1913-23.
    Pubmed KoreaMed CrossRef
  39. Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, et al. SIRT1 improves insulin sensitivity under insulinresistant conditions by repressing PTP1B. Cell Metab 2007;6:307-19.
    Pubmed CrossRef
  40. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771-6.
    Pubmed KoreaMed CrossRef
  41. Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 2006;281:39915-24.
    Pubmed CrossRef
  42. Yoshizaki T, Milne JC, Imamura T, Schenk S, Sonoda N, Babendure JL, et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 2009;29:1363-74.
    Pubmed KoreaMed CrossRef
  43. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006;5:493-506.
    Pubmed CrossRef
  44. Chen XW, Serag ES, Sneed KB, Zhou SF. Herbal bioactivation, molecular targets and the toxicity relevance. Chem Biol Interact 2011;192:161-76.
    Pubmed CrossRef
  45. Vidavalur R, Otani H, Singal PK, Maulik N. Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol 2006;11:217-25.
    Pubmed KoreaMed
  46. de Gaetano G, De Curtis A, di Castelnuovo A, Donati MB, Iacoviello L, Rotondo S. Antithrombotic effect of polyphenols in experimental models: a mechanism of reduced vascular risk by moderate wine consumption. Ann N Y Acad Sci 2002;957:174-88.
    Pubmed CrossRef
  47. Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 2005;49:472-81.
    Pubmed CrossRef
  48. Das DK, Mukherjee S, Ray D. Resveratrol and red wine, healthy heart and longevity. Heart Fail Rev 2010;15:467-77.
    Pubmed CrossRef
  49. Rocha-Gonzalez HI, Ambriz-Tututi M, Granados-Soto V. Resveratrol: a natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci Ther 2008;14:234-47.
    Pubmed CrossRef
  50. Das M, Das DK. Resveratrol and cardiovascular health. Mol Aspects Med 2010;31:503-12.
    Pubmed CrossRef
  51. Singh NP, Singh UP, Hegde VL, Guan H, Hofseth L, Nagarkatti M, et al. Resveratrol (trans-3,5,4'-trihydroxystilbene) suppresses EL4 tumor growth by induction of apoptosis involving reciprocal regulation of SIRT1 and NF-kappaB. Mol Nutr Food Res 2011;55:1207-18.
    Pubmed KoreaMed CrossRef
  52. Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, et al. AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 2010;298:E751-60.
    Pubmed KoreaMed CrossRef