Journal of Obesity & Metabolic Syndrome

Search

Article

Korean J Obes 2012; 21(3): 132-139

Published online September 30, 2012

Copyright © Korean Society for the Study of Obesity.

Effects of Functional Food Components in Reducing Obesity-induced Inflammation and Metabolic Diseases

Ji-Hye Kang, Rina Yu*

Department of Food Science and Nutrition, University of Ulsan

Obesity-induced inflammation leads to metabolic complications such as insulin resistance, type 2 diabetes, liver diseases, atherosclerosis, and certain types of cancers.
Hence, modulation of obesity-induced inflammation is considered to be a useful strategy for protecting against metabolic diseases. In this min-review, we will introduce some of the functional food components, which may be useful for protecting obesity-induced inflammation and metabolic diseases

Keywords: Obesity, Inflammation, Metabolic diseases, Functional food

Fig. 1. Obesity-induced inflammation, metabolic diseases, and functional food components.
  1. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated C-reactive protein levels in overweight and obese adults. JAMA 1999;282:2131-5.
    Pubmed CrossRef
  2. Wellen KE, Hotamisligil GS. Inflammation, stress, diabetes. J Clin Invest 2005;115:1111-9.
    CrossRef
  3. Matsuzawa Y, Shimomura I, Kihara S, Funahashi T. Importance of adipocytokines in obesity-related diseases. Horm Res 2003;60 Suppl 3:56-9.
    Pubmed CrossRef
  4. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796-808.
    Pubmed KoreaMed CrossRef
  5. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117:175-84.
    Pubmed KoreaMed CrossRef
  6. Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 2005;25:2062-8.
    Pubmed CrossRef
  7. Yu R, Kim CS, Kwon BS, Kawada T. Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity (Silver Spring) 2006;14:1353-62.
    Pubmed CrossRef
  8. Kim HJ, Kim HM, Kim CS, Jeong CS, Choi HS, Kawada T, et al. HVEM-deficient mice fed a high-fat diet are protected from adipose tissue inflammation and glucose intolerance. FEBS Lett 2011;585:2285 -90.
    Pubmed CrossRef
  9. Kim CS, Kim JG, Lee BJ, Choi MS, Choi HS, Kawada T, et al. Deficiency for costimulatory receptor 4-1BB protects against obesity-induced inflammation and metabolic disorders. Diabetes 2011;60:3159-68.
    Pubmed KoreaMed CrossRef
  10. Kim F, Pham M, Luttrell I, Bannerman DD, Tupper J, Thaler J, et al. Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res 2007;100:1589-96.
    Pubmed CrossRef
  11. Romanatto T, Roman EA, Arruda AP, Denis RG, Solon C, Milanski M, et al. Deletion of tumor necrosis factor-alpha receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis. J Biol Chem 2009;284:36213-22.
    Pubmed KoreaMed CrossRef
  12. Poggi M, Engel D, Christ A, Beckers L, Wijnands E, Boon L, et al. CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler Thromb Vasc Biol 2011;31:2251-60.
    Pubmed CrossRef
  13. Ehses JA, Meier DT, Wueest S, Rytka J, Boller S, Wielinga PY, et al. Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia 2010;53:1795-806.
    Pubmed CrossRef
  14. Kang JH, Goto T, Han IS, Kawada T, Kim YM, Yu R. Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet. Obesity (Silver Spring) 2010;18:780-7.
    Pubmed CrossRef
  15. Kang JH, Kim CS, Han IS, Kawada T, Yu R. Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes, suppresses the inflammatory responses of adipose tissue macrophages. FEBS Lett 2007;581:4389-96.
    Pubmed CrossRef
  16. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 2000;49:497-505.
    Pubmed CrossRef
  17. Yamauchi T, Kamon J, Waki H, Murakami K, Motojima K, Komeda K, et al. The mechanisms by which both heterozygous peroxisome proliferator -activated receptor gamma (PPARgamma) deficiency and PPARgamma agonist improve insulin resistance. J Biol Chem 2001;276:41245-54.
    Pubmed CrossRef
  18. Ghanim H, Dhindsa S, Aljada A, Chaudhuri A, Viswanathan P, Dandona P. Low-dose rosiglitazone exerts an antiinflammatory effect with an increase in adiponectin independently of free fatty acid fall and insulin sensitization in obese type 2 diabetics. J Clin Endocrinol Metab 2006;91:3553-8.
    Pubmed CrossRef
  19. Kawada T, Hagihara K, Iwai K. Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J Nutr 1986;116:1272-8.
    Pubmed
  20. Ejaz A, Wu D, Kwan P, Meydani M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr 2009;139:919-25.
    Pubmed CrossRef
  21. Asai A, Miyazawa T. Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J Nutr 2001;131:2932-5.
    Pubmed
  22. Macarulla MT, Alberdi G, Gomez S, Tueros I, Bald C, Rodriguez VM, et al. Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet. J Physiol Biochem 2009;65:369-76.
    Pubmed CrossRef
  23. Alberdi G, Rodriguez VM, Miranda J, Macarulla MT, Arias N, Andres-Lacueva C, et al. Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutr Metab (Lond) 2011;8:29.
    Pubmed KoreaMed CrossRef
  24. Joo JI, Kim DH, Choi JW, Yun JW. Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet. J Proteome Res 2010;9:2977-87.
    Pubmed CrossRef
  25. Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 2010;30:173-99.
    Pubmed KoreaMed CrossRef
  26. Weisberg SP, Leibel R, Tortoriello DV. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology 2008;149:3549-58.
    Pubmed KoreaMed CrossRef
  27. Woo HM, Kang JH, Kawada T, Yoo H, Sung MK, Yu R. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes. Life Sci 2007;80:926-31.
    Pubmed CrossRef
  28. Kuo JJ, Chang HH, Tsai TH, Lee TY. Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Int J Mol Med 2012;30:673-9.
    Pubmed
  29. Kang L, Heng W, Yuan A, Baolin L, Fang H. Resveratrol modulates adipokine expression and improves insulin sensitivity in adipocytes: Relative to inhibition of inflammatory responses. Biochimie 2010;92:789-96.
    Pubmed CrossRef
  30. Olholm J, Paulsen SK, Cullberg KB, Richelsen B, Pedersen SB. Anti-inflammatory effect of resveratrol on adipokine expression and secretion in human adipose tissue explants. Int J Obes (Lond) 2010;34:1546-53.
    Pubmed CrossRef
  31. Jeon BT, Jeong EA, Shin HJ, Lee Y, Lee DH, Kim HJ, et al. Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes 2012;61:1444-54.
    Pubmed KoreaMed CrossRef
  32. Kim S, Jin Y, Choi Y, Park T. Resveratrol exerts anti-obesity effects via mechanisms involving down -regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 2011;81:1343-51.
    Pubmed CrossRef
  33. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, et al. Calorie restriction -like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 2011;14:612-22.
    Pubmed KoreaMed CrossRef
  34. Elson CE, Underbakke GL, Hanson P, Shrago E, Wainberg RH, Qureshi AA. Impact of lemongrass oil, an essential oil, on serum cholesterol. Lipids 1989;24:677-9.
    Pubmed CrossRef
  35. Aranda FJ, Villalain J. The interaction of abietic acid with phospholipid membranes. Biochim Biophys Acta 1997;1327:171-80.
    CrossRef
  36. Takahashi N, Kawada T, Goto T, Yamamoto T, Taimatsu A, Matsui N, et al. Dual action of isoprenols from herbal medicines on both PPARgamma and PPARalpha in 3T3-L1 adipocytes and HepG2 hepatocytes. FEBS Lett 2002;514:315-22.
    CrossRef
  37. Kang MS, Hirai S, Goto T, Kuroyanagi K, Kim YI, Ohyama K, et al. Dehydroabietic acid, a diterpene, improves diabetes and hyperlipidemia in obese diabetic KK-Ay mice. Biofactors 2009;35:442-8.
    Pubmed CrossRef
  38. Kang MS, Hirai S, Goto T, Kuroyanagi K, Lee JY, Uemura T, et al. Dehydroabietic acid, a phytochemical, acts as ligand for PPARs in macrophages and adipocytes to regulate inflammation. Biochem Biophys Res Commun 2008;369:333-8.
    Pubmed CrossRef
  39. Kuroyanagi K, Kang MS, Goto T, Hirai S, Ohyama K, Kusudo T, et al. Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2008;366:219-25.
    Pubmed CrossRef
  40. Takahashi N, Kang MS, Kuroyanagi K, Goto T, Hirai S, Ohyama K, et al. Auraptene, a citrus fruit compound, regulates gene expression as a PPARalpha agonist in HepG2 hepatocytes. Biofactors 2008;33:25 -32.
    Pubmed CrossRef
  41. Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, et al. Peroxisome proliferator-activated receptor (PPAR) alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, their combination. Diabetes 2005;54:3358-70.
    Pubmed CrossRef
  42. Takahashi N, Senda M, Lin S, Goto T, Yano M, Sasaki T, et al. Auraptene regulates gene expression involved in lipid metabolism through PPARalpha activation in diabetic obese mice. Mol Nutr Food Res 2011;55:1791-7.
    Pubmed CrossRef
  43. Ando C, Takahashi N, Hirai S, Nishimura K, Lin S, Uemura T, et al. Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation. FEBS Lett 2009;583:3649-54.
    Pubmed CrossRef
  44. Hirai S, Takahashi N, Goto T, Lin S, Uemura T, Yu R, et al. Functional food targeting the regulation of obesity-induced inflammatory responses and pathologies. Mediators Inflamm 2010;2010:367838.
    Pubmed KoreaMed CrossRef
  45. Ding L, Jin D, Chen X. Luteolin enhances insulin sensitivity via activation of PPARgamma transcriptional activity in adipocytes. J Nutr Biochem 2010;21:941-7.
    Pubmed CrossRef
  46. Hirai S, Kim YI, Goto T, Kang MS, Yoshimura M, Obata A, et al. Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sci 2007;81:1272-9.
    Pubmed CrossRef
  47. Tsuda T, Horio F, Uchida K, Aoki H, Osawa T. Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 2003;133:2125-30.
    Pubmed
  48. Tsuda T. Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome. J Agric Food Chem 2008;56:642-6.
    Pubmed CrossRef
  49. Choe MR, Kang JH, Yoo H, Choe SY, Yang CH, Kim MO, et al. Cyanidin and cyanidin-3-O-D-glucoside suppress the inflammatory responses of obese adipose tissue by inhibiting the release of chemokines MCP-1 and MRP-2. J Food Sci Nutr 2007;12:148-53.
    CrossRef
  50. Guo H, Xia M, Zou T, Ling W, Zhong R, Zhang W. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1. J Nutr Biochem 2012;23:349-60.
    Pubmed CrossRef
  51. Sasaki R, Nishimura N, Hoshino H, Isa Y, Kadowaki M, Ichi T, et al. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem Pharmacol 2007;74:1619-27.
    Pubmed CrossRef
  52. Kim CS, Kawada T, Kim BS, Han IS, Choe SY, Kurata T, et al. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell Signal 2003;15:299-306.
    CrossRef
  53. Choi SE, Kim TH, Yi SA, Hwang YC, Hwang WS, Choe SJ, et al. Capsaicin attenuates palmitate-induced expression of macrophage inflammatory protein 1 and interleukin 8 by increasing palmitate oxidation and reducing c-Jun activation in THP-1 (human acute monocytic leukemia cell) cells. Nutr Res 2011;31:468 -78.
    Pubmed CrossRef
  54. Kang JH, Tsuyoshi G, Le Ngoc H, Kim HM, Tu TH, Noh HJ, et al. Dietary capsaicin attenuates metabolic dysregulation in genetically obese diabetic mice. J Med Food 2011;14:310-5.
    Pubmed CrossRef
  55. Hirai S, Uemura T, Mizoguchi N, Lee JY, Taketani K, Nakano Y, et al. Diosgenin attenuates inflammatory changes in the interaction between adipocytes and macrophages. Mol Nutr Food Res 2010;54:797-804.
    Pubmed CrossRef
  56. Jung SA, Choi M, Kim S, Yu R, Park T. Cinchonine Prevents High-Fat-Diet-Induced Obesity through Downregulation of Adipogenesis and Adipose Inflammation. PPAR Res 2012;2012:541204.
    Pubmed KoreaMed CrossRef
  57. Cho S, Choi Y, Park S, Park T. Carvacrol prevents diet-induced obesity by modulating gene expressions involved in adipogenesis and inflammation in mice fed with high-fat diet. J Nutr Biochem 2012;23:192-201.
    Pubmed CrossRef