Journal of Obesity & Metabolic Syndrome

Search

Article

Korean J Obes 2013; 22(4): 197-204

Published online December 31, 2013

Copyright © Korean Society for the Study of Obesity.

Food Intake and Gut Hormones

Young Hye Cho, Sang Yeoup Lee(1)*

Medical Education Unit, Pusan National University School of Medicine; Family Medicine Clinic; and
Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital(1)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peptide hormones, which regulate appetite, energy expenditure and glucose homeostasis, are released from the gastrointestinal tract in response to nutrients and they communicate information to the brain regarding the current state of energy balance. They can act on target peripheral tissues through circulation by either activating the vagus nerve or by activating the hypothalamus and brainstem so that are implicated in energy homeostasis. An overview of the main gut hormones implicated in the regulation of food intake and how some of these hormones are being targeted to develop anti obesity treatments are discussed in this review.

Keywords: Gut hormone, Peptide YY, Glucagon-like peptide-1, Glucagon, Ghrelin, Obesity

Fig. 1.

A schematic representation of the complex pathways involved in the regulation of food intake.

SNS, sympathetic nerve system; NTS, nucleus of the tractus solitarius; CCK, cholecystokinin; NPY, neuropeptide Y; AGRP, Agouti-related peptide; POMC, pro-opiomelanocortin; CART, cocaine-and amphetamine-regulated transcript; CRH, corticotropin-releasing hormone; TRH, thyrotropin-releasing hormone; MCH, melanin-concentrating hormone; PYY, peptide YY.


  1. Khang YH, Yun SC. Trends in general and abdominal obesity among Korean adults: findings from 1998, 2001, 2005, 2007 Korea National Health and Nutrition Examination Surveys. J Korean Med Sci 2010;25:1582-8.
    Pubmed KoreaMed CrossRef
  2. Prospective Studies Collaboration, Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009;373:1083-96.
    CrossRef
  3. Zheng W, McLerran DF, Rolland B, Zhang X, Inoue M, Matsuo K, et al. Association between body-mass index and risk of death in more than 1 million Asians. N Engl J Med 2011;364:719-29.
    Pubmed KoreaMed CrossRef
  4. Kim HR. Policy Suggestions on Obesity Prevention Strategies and Programs. Health and welfare Policy Forum 2010;163:39-49.
  5. Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature 2006;444:854-9.
    Pubmed CrossRef
  6. Chaudhri OB, Field BC, Bloom SR. Gastrointestinal satiety signals. Int J Obes (Lond) 2008;32 Suppl 7:28-31.
    Pubmed CrossRef
  7. Badman MK, Flier JS. The gut and energy balance:visceral allies in the obesity wars. Science 2005;307:1909-14.
    Pubmed CrossRef
  8. Wen J, Phillips SF, Sarr MG, Kost LJ, Holst JJ. PYY and GLP-1 contribute to feedback inhibition from the canine ileum and colon. Am J Physiol 1995;269:G945 -52.
    Pubmed
  9. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 1985;89:1070-7.
    Pubmed
  10. Grandt D, Schimiczek M, Beglinger C, Layer P, Goebell H, Eysselein VE, et al. Two molecular forms of peptide YY (PYY) are abundant in human blood:characterization of a radioimmunoassay recognizing PYY 1-36 and PYY 3-36. Regul Pept 1994;51:151-9.
    CrossRef
  11. Batterham RL, Bloom SR. The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci 2003;994:162-8.
    CrossRef
  12. Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, Herzog H, et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab 2006;4:223-33.
    Pubmed CrossRef
  13. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 2003;349:941-8.
    Pubmed CrossRef
  14. Abbott CR, Small CJ, Kennedy AR, Neary NM, Sajedi A, Ghatei MA, et al. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3-36) on food intake. Brain Res 2005;1043:139-44.
    Pubmed CrossRef
  15. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005;28:1092-100.
    Pubmed CrossRef
  16. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002;418:650-4.
    Pubmed CrossRef
  17. Challis BG, Coll AP, Yeo GS, Pinnock SB, Dickson SL, Thresher RR, et al. Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY(3-36). Proc Natl Acad Sci U S A 2004;101:4695-700.
    Pubmed KoreaMed CrossRef
  18. Chandarana K, Gelegen C, Karra E, Choudhury AI, Drew ME, Fauveau V, et al. Diet and gastrointestinal bypass-induced weight loss: the roles of ghrelin and peptide YY. Diabetes 2011;60:810-8.
    Pubmed KoreaMed CrossRef
  19. Koda S, Date Y, Murakami N, Shimbara T, Hanada T, Toshinai K, et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 2005;146:2369-75.
    Pubmed CrossRef
  20. Chuang JC, Perello M, Sakata I, Osborne-Lawrence S, Savitt JM, Lutter M, et al. Ghrelin mediates stress-induced food-reward behavior in mice. J Clin Invest 2011;121:2684-92.
    Pubmed KoreaMed CrossRef
  21. Covasa M, Marcuson JK, Ritter RC. Diminished satiation in rats exposed to elevated levels of endogenous or exogenous cholecystokinin. Am J Physiol Regul Integr Comp Physiol 2001;280:R331-7.
    Pubmed
  22. Asakawa A, Inui A, Yuzuriha H, Ueno N, Katsuura G, Fujimiya M, et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology 2003;124:1325-36.
    CrossRef
  23. Punjabi M, Arnold M, Geary N, Langhans W, Pacheco-L?pez G. Peripheral glucagon-like peptide-1 (GLP-1) and satiation. Physiol Behav 2011;105:71-6.
    Pubmed CrossRef
  24. Verdich C, Flint A, Gutzwiller JP, N?slund E, Beglinger C, Hellstr?m PM, et al. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 2001;86:4382-9.
    Pubmed CrossRef
  25. Joy SV, Rodgers PT, Scates AC. Incretin mimetics as emerging treatments for type 2 diabetes. Ann Pharmacother 2005;39:110-8.
    Pubmed CrossRef
  26. Astrup A, Carraro R, Finer N, Harper A, Kunesova M, Lean ME, et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int J Obes (Lond) 2012;36:843-54.
    KoreaMed CrossRef
  27. Bewick GA, Kent A, Campbell D, Patterson M, Ghatei MA, Bloom SR, et al. Mice with hyperghrelinemia are hyperphagic and glucose intolerant and have reduced leptin sensitivity. Diabetes 2009;58:840-6.
    Pubmed KoreaMed CrossRef
  28. Dakin CL, Small CJ, Batterham RL, Neary NM, Cohen MA, Patterson M, et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 2004;145:2687-95.
    Pubmed CrossRef
  29. Cohen MA, Ellis SM, Le Roux CW, Batterham RL, Park A, Patterson M, et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 2003;88:4696-701.
    Pubmed CrossRef
  30. Wynne K, Park AJ, Small CJ, Patterson M, Ellis SM, Murphy KG, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 2005;54:2390-5.
    Pubmed CrossRef
  31. Wynne K, Park AJ, Small CJ, Meeran K, Ghatei MA, Frost GS, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond) 2006;30:1729-36.
    Pubmed CrossRef
  32. Parkinson JR, Chaudhri OB, Kuo YT, Field BC, Herlihy AH, Dhillo WS, et al. Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI). Neuroimage 2009;44:1022-31.
    Pubmed CrossRef
  33. Striffler J, Cardell EL, Cardell RR Jr. Effects of glucagon on hepatic glycogen and smooth endoplasmic reticulum. Am J Anat 1981;160:363-79.
    Pubmed CrossRef
  34. Nair KS. Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency. J Clin Endocrinol Metab 1987;64:896-901.
    Pubmed CrossRef
  35. Schulman JL, Carleton JL, Whitney G, Whitehorn JC. Effect of glucagon on food intake and body weight in man. J Appl Physiol 1957;11:419-21.
    Pubmed
  36. Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 2009;58:2258-66.
    Pubmed KoreaMed CrossRef
  37. Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol 2009;5:749-57.
    Pubmed CrossRef
  38. Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 2008;132:387-96.
    Pubmed CrossRef
  39. Atalayer D, Gibson C, Konopacka A, Geliebter A. Ghrelin and eating disorders. Prog Neuropsychopharmacol Biol Psychiatry 2013;40:70-82.
    Pubmed KoreaMed CrossRef
  40. Lawrence CB, Snape AC, Baudoin FM, Luckman SM. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology 2002;143:155-62.
    Pubmed CrossRef
  41. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 2002;346:1623-30.
    Pubmed CrossRef
  42. Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 2002;123:1120-8.
    Pubmed CrossRef
  43. Briggs DI, Enriori PJ, Lemus MB, Cowley MA, Andrews ZB. Diet-induced obesity causes ghrelin resistance in arcuate NPY/AgRP neurons. Endocrinology 2010;151:4745-55.
    Pubmed CrossRef
  44. Perez-Tilve D, Heppner K, Kirchner H, Lockie SH, Woods SC, Smiley DL, et al. Ghrelin-induced adiposity is independent of orexigenic effects. FASEB J 2011;25:2814-22.
    Pubmed KoreaMed CrossRef
  45. Tan TM, Field BC, Minnion JS, Cuenco Shillito J, Chambers ES, Zac Varghese S, et al. Pharmacokinetics, adverse effects and tolerability of a novel analogue of human pancreatic polypeptide, PP 1420. Br J Clin Pharmacol 2012;73:232-9.
    Pubmed KoreaMed CrossRef
  46. Kitabgi P. Prohormone convertases differentially process pro-neurotensin/neuromedin N in tissues and cell lines. J Mol Med (Berl) 2006;84:628-34.
    Pubmed CrossRef
  47. Cooke JH, Patterson M, Patel SR, Smith KL, Ghatei MA, Bloom SR, et al. Peripheral and central administration of xenin and neurotensin suppress food intake in rodents. Obesity (Silver Spring) 2009;17:1135-43.
    CrossRef
  48. Ratner R, Whitehouse F, Fineman MS, Strobel S, Shen L, Maggs DG, et al. Adjunctive therapy with pramlintide lowers HbA1c without concomitant weight gain and increased risk of severe hypoglycemia in patients with type 1 diabetes approaching glycemic targets. Exp Clin Endocrinol Diabetes 2005;113:199-204.
    Pubmed CrossRef
  49. Ghourab S, Beale KE, Semjonous NM, Simpson KA, Martin NM, Ghatei MA, et al. Intracerebroventricular administration of vasoactive intestinal peptide inhibits food intake. Regul Pept 2011;172:8-15.
    Pubmed CrossRef
  50. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, et al. Long-term mortality after gastric bypass surgery. N Engl J Med 2007;357:753-61.
    Pubmed CrossRef
  51. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 2012;366:1577-85.
    Pubmed CrossRef
  52. le Roux CW, Borg C, Wallis K, Vincent RP, Bueter M, Goodlad R, et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg 2010;252:50-6.
    Pubmed CrossRef
  53. Neary NM, Small CJ, Druce MR, Park AJ, Ellis SM, Semjonous NM, et al. Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 2005;146:5120-7.
    Pubmed CrossRef
  54. Field BC, Wren AM, Peters V, Baynes KC, Martin NM, Patterson M, et al. PYY3-36 and oxyntomodulin can be additive in their effect on food intake in overweight and obese humans. Diabetes 2010;59:1635-9.
    Pubmed KoreaMed CrossRef
  55. Chu ZL, Carroll C, Alfonso J, Gutierrez V, He H, Lucman A, et al. A role for intestinal endocrine cell-expressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like Peptide-1 and glucose-dependent insulinotropic Peptide release. Endocrinology 2008;149:2038-47.
    Pubmed CrossRef