Journal of Obesity & Metabolic Syndrome

Search

Article

Korean J Obes 2014; 23(1): 6-15

Published online March 30, 2014

Copyright © Korean Society for the Study of Obesity.

Gut Hormone Response to Diet

Gwanpyo Koh*

Department of Internal Medicine, Jeju National University School of Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Gut hormones are important in modulating appetite, energy expenditure, glucose and lipid homeostasis, and various metabolic functions in response to food ingestion. Metabolic diseases, such as type 2 diabetes and obesity, lead to abnormal responses of gut hormones in enteroendocrine cells. Therefore, gut hormones are proposed as new therapeutic targets for prevention and management of metabolic disorders. Diet composition, nutrients, non-nutritional components, and physical properties of food determine the responses of gut hormones through modulating its secretion and transcription and differentiation of enteroendocrine cells. In the last few years, the introduction of new experimental techniques and increasing trend of clinical trial enable us to understand the specific mechanisms or sensing machinery that respond to the diet. The present article reviews the current knowledge concerning dietary effects on the secretion of gut hormones and interactions with enteroendocrine cells.

Keywords: Gut hormone, Enteroendocrine cell, Diet, Obesity, Type 2 diabetes

  1. Murphy KG, Dhillo WS, Bloom SR. Gut peptides in the regulation of food intake and energy homeostasis. Endocr Rev 2006;27:719-27.
    Pubmed CrossRef
  2. Garc?a-Mart?nez JM, Chocarro-Calvo A, Moya CM, Garc?a-Jim?nez C. WNT/beta-catenin increases the production of incretins by entero-endocrine cells. Diabetologia 2009;52:1913-24.
    Pubmed CrossRef
  3. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58:1091-103.
    Pubmed KoreaMed CrossRef
  4. Brown JC. A gastric inhibitory polypeptide. I. The amino acid composition and the tryptic peptides. Can J Biochem 1971;49:255-61.
    Pubmed CrossRef
  5. Dupre J, Ross SA, Watson D, Brown JC. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 1973;37:826-8.
    Pubmed CrossRef
  6. Theodorakis MJ, Carlson O, Michopoulos S, Doyle ME, Juhaszova M, Petraki K, et al. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab 2006;290:E550-9.
    Pubmed CrossRef
  7. Tsukiyama K, Yamada Y, Yamada C, Harada N, Kawasaki Y, Ogura M, et al. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol 2006;20:1644-51.
    Pubmed CrossRef
  8. Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 2002;8:738-42.
    Pubmed CrossRef
  9. McClean PL, Irwin N, Cassidy RS, Holst JJ, Gault VA, Flatt PR. GIP receptor antagonism reverses obesity, insulin resistance, associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am J Physiol Endocrinol Metab 2007;293:E1746-55.
    Pubmed CrossRef
  10. Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest 2007;117:24-32.
    Pubmed KoreaMed CrossRef
  11. En? FY, Ones T, Akin HL, Dede F, Turo?lu HT, Ulfer G, et al. Orlistat accelerates gastric emptying and attenuates GIP release in healthy subjects. Am J Physiol Gastrointest Liver Physiol 2009;296:G482-9.
    Pubmed CrossRef
  12. Thomsen C, Rasmussen O, Lousen T, Holst JJ, Fenselau S, Schrezenmeir J, et al. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr 1999;69:1135-43.
    Pubmed
  13. Cho YM, Kieffer TJ. K-cells and glucose-dependent insulinotropic polypeptide in health and disease. Vitam Horm 2010;84:111-50.
    Pubmed CrossRef
  14. Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 2008;57:2280-7.
    Pubmed KoreaMed CrossRef
  15. Parker HE, Habib AM, Rogers GJ, Gribble FM, Reimann F. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 2009;52:289-98.
    Pubmed KoreaMed CrossRef
  16. Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A 2007;104:15069-74.
    Pubmed KoreaMed CrossRef
  17. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter
  18. Proc Natl Acad Sci U S A 2007;104:15075-80.
    Pubmed KoreaMed CrossRef
  19. Wolfe MM, Zhao KB, Glazier KD, Jarboe LA, Tseng CC. Regulation of glucose-dependent insulinotropic polypeptide release by protein in the rat. Am J Physiol Gastrointest Liver Physiol 2000;279:G561-6.
    Pubmed
  20. Karamanlis A, Chaikomin R, Doran S, Bellon M, Bartholomeusz FD, Wishart JM, et al. Effects of protein on glycemic and incretin responses and gastric emptying after oral glucose in healthy subjects. Am J Clin Nutr 2007;86:1364-8.
    Pubmed
  21. Carr RD, Larsen MO, Winzell MS, Jelic K, Lindgren O, Deacon CF, et al. Incretin and islet hormonal responses to fat and protein ingestion in healthy men. Am J Physiol Endocrinol Metab 2008;295:E779-84.
    Pubmed CrossRef
  22. Nilsson M, Stenberg M, Frid AH, Holst JJ, Bj?rck IM. Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins:the role of plasma amino acids and incretins. Am J Clin Nutr 2004;80:1246-53.
    Pubmed
  23. Frid AH, Nilsson M, Holst JJ, Bj?rck IM. Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects. Am J Clin Nutr 2005;82:69-75.
    Pubmed
  24. Liddle RA. Cholecystokinin cells. Annu Rev Physiol 1997;59:221-42.
    Pubmed CrossRef
  25. Jenny M, Uhl C, Roche C, Duluc I, Guillermin V, Guillemot F, et al. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J 2002;21:6338-47.
    Pubmed KoreaMed CrossRef
  26. Moran TH, Kinzig KP. Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol 2004;286:G183-8.
    Pubmed CrossRef
  27. Cheung GW, Kokorovic A, Lam CK, Chari M, Lam TK. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab 2009;10:99-109.
    Pubmed CrossRef
  28. Karhunen LJ, Juvonen KR, Huotari A, Purhonen AK, Herzig KH. Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept 2008;149:70-8.
    Pubmed CrossRef
  29. Ellrichmann M, Kapelle M, Ritter PR, Holst JJ, Herzig KH, Schmidt WE, et al. Orlistat inhibition of intestinal lipase acutely increases appetite and attenuates postprandial glucagon-like peptide-1-(7-36)-amide-1, cholecystokinin, peptide YY concentrations. J Clin Endocrinol Metab 2008;93:3995-8.
    Pubmed CrossRef
  30. Tanaka T, Katsuma S, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G. Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch Pharmacol 2008;377:523-7.
    Pubmed CrossRef
  31. Liou AP, Chavez DI, Espero E, Hao S, Wank SA, Raybould HE. Protein hydrolysate-induced cholecystokinin secretion from enteroendocrine cells is indirectly mediated by the intestinal oligopeptide transporter PepT1. Am J Physiol Gastrointest Liver Physiol 2011;300:G895-902.
    Pubmed KoreaMed CrossRef
  32. Gerspach AC, Steinert RE, Sch?nenberger L, Graber-Maier A, Beglinger C. The role of the gut sweet taste receptor in regulating GLP-1, PYY, CCK release in humans. Am J Physiol Endocrinol Metab 2011;301:E317-25.
    Pubmed CrossRef
  33. Nakajima S, Hira T, Eto Y, Asano K, Hara H. Soybean beta 51-63 peptide stimulates cholecystokinin secretion via a calcium-sensing receptor in enteroendocrine STC-1 cells. Regul Pept 2010;159:148-55.
    Pubmed CrossRef
  34. Le Nev? B, Foltz M, Daniel H, Gouka R. The steroid glycoside H.g.-12 from Hoodia gordonii activates the human bitter receptor TAS2R14 and induces CCK release from HuTu-80 cells. Am J Physiol Gastrointest Liver Physiol 2010;299:G1368-75.
    Pubmed CrossRef
  35. Bell GI, Sanchez-Pescador R, Laybourn PJ, Najarian RC. Exon duplication and divergence in the human preproglucagon gene. Nature 1983;304:368-71.
    Pubmed CrossRef
  36. Schmidt WE, Siegel EG, Creutzfeldt W. Glucagon-like peptide-1 but not glucagon-like peptide-2 stimulates insulin release from isolated rat pancreatic islets. Diabetologia 1985;28:704-7.
    Pubmed CrossRef
  37. Boh?rquez DV, Chandra R, Samsa LA, Vigna SR, Liddle RA. Characterization of basal pseudopod-like processes in ileal and colonic PYY cells. J Mol Histol 2011;42:3-13.
    Pubmed KoreaMed CrossRef
  38. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008;60:470-512.
    Pubmed KoreaMed CrossRef
  39. Ma J, Stevens JE, Cukier K, Maddox AF, Wishart JM, Jones KL, et al. Effects of a protein preload on gastric emptying, glycemia, gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes Care 2009;32:1600-2.
    Pubmed KoreaMed CrossRef
  40. Little TJ, Doran S, Meyer JH, Smout AJ, O'Donovan DG, Wu KL, et al. The release of GLP-1 and ghrelin, but not GIP and CCK, by glucose is dependent upon the length of small intestine exposed. Am J Physiol Endocrinol Metab 2006;291:E647-55.
    Pubmed CrossRef
  41. Nilsson M, Holst JJ, Bj?rck IM. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 2007;85:996-1004.
    Pubmed
  42. Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, Gribble FM. Glucose sensing in L cells: a primary cell study. Cell Metab 2008;8:532-9.
    Pubmed KoreaMed CrossRef
  43. Mace OJ, Affleck J, Patel N, Kellett GL. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol 2007;582:379-92.
    Pubmed KoreaMed CrossRef
  44. Brown RJ, Walter M, Rother KI. Ingestion of diet soda before a glucose load augments glucagon-like peptide-1 secretion. Diabetes Care 2009;32:2184-6.
    Pubmed KoreaMed CrossRef
  45. Feltrin KL, Little TJ, Meyer JH, Horowitz M, Smout AJ, Wishart J, et al. Effects of intraduodenal fatty acids on appetite, antropyloroduodenal motility, plasma CCK and GLP-1 in humans vary with their chain length. Am J Physiol Regul Integr Comp Physiol 2004;287:R524-33.
    Pubmed CrossRef
  46. Yoder SM, Yang Q, Kindel TL, Tso P. Stimulation of incretin secretion by dietary lipid: is it dose dependent? Am J Physiol Gastrointest Liver Physiol 2009;297:G299-305.
    Pubmed KoreaMed CrossRef
  47. Beglinger S, Drewe J, Schirra J, G?ke B, D'Amato M, Beglinger C. Role of fat hydrolysis in regulating glucagon-like Peptide-1 secretion. J Clin Endocrinol Metab 2010;95:879-86.
    Pubmed CrossRef
  48. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 2005;11:90-4.
    Pubmed CrossRef
  49. Chu ZL, Carroll C, Alfonso J, Gutierrez V, He H, Lucman A, et al. A role for intestinal endocrine cell-expressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like Peptide-1 and glucose-dependent insulinotropic Peptide release. Endocrinology 2008;149:2038-47.
    Pubmed CrossRef
  50. Hall WL, Millward DJ, Long SJ, Morgan LM. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br J Nutr 2003;89:239-48.
    Pubmed CrossRef
  51. Reimann F, Williams L, da Silva Xavier G, Rutter GA, Gribble FM. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 2004;47:1592-601.
    Pubmed CrossRef
  52. Samocha-Bonet D, Wong O, Synnott EL, Piyaratna N, Douglas A, Gribble FM, et al. Glutamine reduces postprandial glycemia and augments the glucagon-like peptide-1 response in type 2 diabetes patients. J Nutr 2011;141:1233-8.
    Pubmed CrossRef
  53. Tolhurst G, Zheng Y, Parker HE, Habib AM, Reimann F, Gribble FM. Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+ and cAMP. Endocrinology 2011;152:405-13.
    Pubmed KoreaMed CrossRef
  54. Le Nev? B, Daniel H. Selected tetrapeptides lead to a GLP-1 release from the human enteroendocrine cell line NCI-H716. Regul Pept 2011;167:14-20.
    Pubmed CrossRef
  55. Young SH, Rey O, Sternini C, Rozengurt E. Amino acid sensing by enteroendocrine STC-1 cells: role of the Na+-coupled neutral amino acid transporter 2. Am J Physiol Cell Physiol 2010;298:C1401-13.
    Pubmed KoreaMed CrossRef
  56. Kaji I, Karaki S, Tanaka R, Kuwahara A. Density distribution of free fatty acid receptor 2 (FFA2)expressing and GLP-1-producing enteroendocrine L cells in human and rat lower intestine, increased cell numbers after ingestion of fructo-oligosaccharide. J Mol Histol 2011;42:27-38.
    Pubmed CrossRef
  57. Smeets AJ, Soenen S, Luscombe-Marsh ND, Ueland Ø, Westerterp-Plantenga MS. Energy expenditure, satiety, plasma ghrelin, glucagon-like peptide 1, peptide tyrosine-tyrosine concentrations following a single high-protein lunch. J Nutr 2008;138:698-702.
    Pubmed
  58. Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, Herzog H, et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab 2006;4:223-33.
    Pubmed CrossRef
  59. Lomenick JP, Melguizo MS, Mitchell SL, Summar ML, Anderson JW. Effects of meals high in carbohydrate, protein, fat on ghrelin and peptide YY secretion in prepubertal children. J Clin Endocrinol Metab 2009;94:4463-71.
    Pubmed KoreaMed CrossRef
  60. Hata T, Mera Y, Ishii Y, Tadaki H, Tomimoto D, Kuroki Y, et al. JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, suppresses food intake and gastric emptying with the elevation of plasma peptide YY and glucagon-like peptide-1 in a dietary fat-dependent manner. J Pharmacol Exp Ther 2011;336:850-6.
    Pubmed CrossRef
  61. Karhunen LJ, Juvonen KR, Flander SM, Liukkonen KH, L?hteenm?ki L, Siloaho M, et al. A psyllium fiber-enriched meal strongly attenuates postprandial gastrointestinal peptide release in healthy young adults. J Nutr 2010;140:737-44.
    Pubmed CrossRef